Mobile brain imaging in butoh dancers: from rehearsals to public performance.

IF 2.4 4区 医学 Q3 NEUROSCIENCES
Constantina Theofanopoulou, Sadye Paez, Derek Huber, Eric Todd, Mauricio A Ramírez-Moreno, Badie Khaleghian, Alberto Muñoz Sánchez, Leah Barceló, Vangeline Gand, José L Contreras-Vidal
{"title":"Mobile brain imaging in butoh dancers: from rehearsals to public performance.","authors":"Constantina Theofanopoulou, Sadye Paez, Derek Huber, Eric Todd, Mauricio A Ramírez-Moreno, Badie Khaleghian, Alberto Muñoz Sánchez, Leah Barceló, Vangeline Gand, José L Contreras-Vidal","doi":"10.1186/s12868-024-00864-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Dissecting the neurobiology of dance would shed light on a complex, yet ubiquitous, form of human communication. In this experiment, we sought to study, via mobile electroencephalography (EEG), the brain activity of five experienced dancers while dancing butoh, a postmodern dance that originated in Japan.</p><p><strong>Results: </strong>We report the experimental design, methods, and practical execution of a highly interdisciplinary project that required the collaboration of dancers, engineers, neuroscientists, musicians, and multimedia artists, among others. We explain in detail how we technically validated all our EEG procedures (e.g., via impedance value monitoring) and minimized potential artifacts in our recordings (e.g., via electrooculography and inertial measurement units). We also describe the engineering details and hardware that enabled us to achieve synchronization between signals recorded at different sampling frequencies, along with a signal preprocessing and denoising pipeline that we used for data re-sampling and power line noise removal. As our experiment culminated in a live performance, where we generated a real-time visualization of the dancers' interbrain synchrony on a screen via an artistic brain-computer interface, we outline all the methodology (e.g., filtering, time-windows, equation) we used for online bispectrum estimations. Additionally, we provide access to all the raw EEG data and codes we used in our recordings. We, lastly, discuss how we envision that the data could be used to address several hypotheses, such as that of interbrain synchrony or the motor theory of vocal learning.</p><p><strong>Conclusions: </strong>Being, to our knowledge, the first study to report synchronous and simultaneous recording from five dancers, we expect that our findings will inform future art-science collaborations, as well as dance-movement therapies.</p>","PeriodicalId":9031,"journal":{"name":"BMC Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11539292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12868-024-00864-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Dissecting the neurobiology of dance would shed light on a complex, yet ubiquitous, form of human communication. In this experiment, we sought to study, via mobile electroencephalography (EEG), the brain activity of five experienced dancers while dancing butoh, a postmodern dance that originated in Japan.

Results: We report the experimental design, methods, and practical execution of a highly interdisciplinary project that required the collaboration of dancers, engineers, neuroscientists, musicians, and multimedia artists, among others. We explain in detail how we technically validated all our EEG procedures (e.g., via impedance value monitoring) and minimized potential artifacts in our recordings (e.g., via electrooculography and inertial measurement units). We also describe the engineering details and hardware that enabled us to achieve synchronization between signals recorded at different sampling frequencies, along with a signal preprocessing and denoising pipeline that we used for data re-sampling and power line noise removal. As our experiment culminated in a live performance, where we generated a real-time visualization of the dancers' interbrain synchrony on a screen via an artistic brain-computer interface, we outline all the methodology (e.g., filtering, time-windows, equation) we used for online bispectrum estimations. Additionally, we provide access to all the raw EEG data and codes we used in our recordings. We, lastly, discuss how we envision that the data could be used to address several hypotheses, such as that of interbrain synchrony or the motor theory of vocal learning.

Conclusions: Being, to our knowledge, the first study to report synchronous and simultaneous recording from five dancers, we expect that our findings will inform future art-science collaborations, as well as dance-movement therapies.

移动脑成像技术在武藤舞者身上的应用:从排练到公开表演。
背景:剖析舞蹈的神经生物学将有助于了解一种复杂但无处不在的人类交流形式。在本实验中,我们试图通过移动脑电图(EEG)研究五位经验丰富的舞者在跳一种起源于日本的后现代舞蹈--"布托"(butoh)时的大脑活动:我们报告了这一高度跨学科项目的实验设计、方法和实际执行情况,该项目需要舞者、工程师、神经科学家、音乐家和多媒体艺术家等多方合作。我们详细介绍了如何从技术上验证我们所有的脑电图程序(例如通过阻抗值监测),以及如何最大限度地减少记录中可能出现的伪影(例如通过脑电图和惯性测量单元)。我们还介绍了使我们能够在不同采样频率下记录的信号之间实现同步的工程细节和硬件,以及我们用于数据重新采样和去除电源线噪声的信号预处理和去噪管道。在现场表演中,我们通过艺术化的脑机接口在屏幕上生成了舞者脑间同步的实时可视化效果,因此我们概述了在线双谱估计所使用的所有方法(如滤波、时间窗口、等式)。此外,我们还提供了记录中使用的所有原始脑电图数据和代码。最后,我们讨论了如何利用这些数据来解决几个假设,如脑间同步或发声学习的运动理论:据我们所知,这是第一项报告五位舞者同步和同时录音的研究,我们希望我们的发现能为未来的艺术科学合作以及舞蹈运动疗法提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Neuroscience
BMC Neuroscience 医学-神经科学
CiteScore
3.90
自引率
0.00%
发文量
64
审稿时长
16 months
期刊介绍: BMC Neuroscience is an open access, peer-reviewed journal that considers articles on all aspects of neuroscience, welcoming studies that provide insight into the molecular, cellular, developmental, genetic and genomic, systems, network, cognitive and behavioral aspects of nervous system function in both health and disease. Both experimental and theoretical studies are within scope, as are studies that describe methodological approaches to monitoring or manipulating nervous system function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信