An Aged Tree with a New Bloom: A Simple Spatiotemporal Programming Strategy Enables Carbon Dot Photosensitizers to Regulate Cell Pyroptosis for Enhanced Tumor Photodynamic-Immunotherapy

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tiejin Chen, Ke Liang, Jian Wang, Jian Li, Xiaokuang Xue, Yongliang Hao, Huanyi Liang, Haohui Ren, Haihua Xiao, Jiechao Ge, Bo Tang
{"title":"An Aged Tree with a New Bloom: A Simple Spatiotemporal Programming Strategy Enables Carbon Dot Photosensitizers to Regulate Cell Pyroptosis for Enhanced Tumor Photodynamic-Immunotherapy","authors":"Tiejin Chen, Ke Liang, Jian Wang, Jian Li, Xiaokuang Xue, Yongliang Hao, Huanyi Liang, Haohui Ren, Haihua Xiao, Jiechao Ge, Bo Tang","doi":"10.1021/acs.nanolett.4c03913","DOIUrl":null,"url":null,"abstract":"Pyroptosis induced by photodynamic therapy (PDT) is a promising field in both PDT and immunotherapy for tumors. However, effectively inducing tumor cell pyroptosis while triggering a strong immune response using current photosensitizers remains challenging. Herein, the developed positively charged carbon dots (PCDs) nanoPSs were utilized to modulate tumor cell pyroptosis for the first time through a simple spatiotemporal programming strategy. Briefly, PCDs enabled precisely time-dependent targeting of the cell membrane or lysosome. Upon light irradiation, <i>in vitro</i> studies revealed that lysosome-targeted PDT primarily induced apoptosis, while membrane-targeted PDT triggered pyroptosis, resulting in enhanced PDT efficacy and robust activation of the immune response. Conclusively, <i>in vivo</i> studies demonstrated that PCDs could serve as a novel pyroptosis nanotuner for enhanced photodynamic-immunotherapy, thereby simultaneously eliminating primary tumors and inhibiting distant tumor growth and metastases. This spatiotemporal programming strategy unprecedentedly offers a rejuvenation of aged PSs and expands the biomedical use of CDs in immunotherapy.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03913","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Pyroptosis induced by photodynamic therapy (PDT) is a promising field in both PDT and immunotherapy for tumors. However, effectively inducing tumor cell pyroptosis while triggering a strong immune response using current photosensitizers remains challenging. Herein, the developed positively charged carbon dots (PCDs) nanoPSs were utilized to modulate tumor cell pyroptosis for the first time through a simple spatiotemporal programming strategy. Briefly, PCDs enabled precisely time-dependent targeting of the cell membrane or lysosome. Upon light irradiation, in vitro studies revealed that lysosome-targeted PDT primarily induced apoptosis, while membrane-targeted PDT triggered pyroptosis, resulting in enhanced PDT efficacy and robust activation of the immune response. Conclusively, in vivo studies demonstrated that PCDs could serve as a novel pyroptosis nanotuner for enhanced photodynamic-immunotherapy, thereby simultaneously eliminating primary tumors and inhibiting distant tumor growth and metastases. This spatiotemporal programming strategy unprecedentedly offers a rejuvenation of aged PSs and expands the biomedical use of CDs in immunotherapy.

Abstract Image

老树开新花:一种简单的时空编程策略可使碳点光敏剂调节细胞跃迁,从而增强肿瘤光动力免疫疗法的效果
光动力疗法(PDT)诱导的热休克是光动力疗法和肿瘤免疫疗法中一个前景广阔的领域。然而,使用目前的光敏剂在有效诱导肿瘤细胞发生热休克的同时引发强烈的免疫反应仍具有挑战性。在这里,我们首次利用开发的带正电荷的碳点(PCDs)纳米PSs,通过简单的时空编程策略来调节肿瘤细胞的热休克。简而言之,PCDs 能够精确地根据时间定向细胞膜或溶酶体。体外研究发现,在光照射下,以溶酶体为靶点的光致透射疗法主要诱导细胞凋亡,而以细胞膜为靶点的光致透射疗法则引发细胞猝死,从而提高了光致透射疗法的疗效,并有力地激活了免疫反应。最终,体内研究表明,PCDs 可以作为一种新型的热凋亡纳米调谐器,用于增强光动力免疫疗法,从而同时消除原发肿瘤并抑制远处肿瘤的生长和转移。这种时空编程策略史无前例地使老化的 PSs 重获新生,并拓展了 CDs 在免疫疗法中的生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信