{"title":"Cavity-enhanced Faraday rotation spectroscopy for interference-free measurement of OH radical at 2.8 μm","authors":"Minh Nhut Ngo , Tong Nguyen-Ba , Nicolas Houzel , Cécile Coeur , Dorothée Dewaele , Fabrice Cazier , Weixiong Zhao , Weidong Chen","doi":"10.1016/j.snb.2024.136901","DOIUrl":null,"url":null,"abstract":"<div><div>An instrument based on cavity-enhanced Faraday rotation spectroscopy (CE-FRS) operating at 2.8 μm has been developed for interference-free measurement of OH radicals in the laboratory. By off-axis coupling of a continuous-wave laser into a high finesse optical cavity, FRS signal is obtained from balanced detection of time-integrated light intensity leaking out of the cavity in the presence of magnetic field. Radio-frequency white noise (5–520 MHz) was injected into laser current which reduced intensity fluctuations in cavity transmission, thus improved the signal-to-noise ratio of the spectroscopic signal by a factor of 2. The setup provides a simple and robust spectroscopic instrument for in-situ and highly-selective detection of paramagnetic species. We demonstrated the instrument’s capabilities using OH radical with concentration in the range of 10<sup>12</sup> molecule.cm<sup>−3</sup>, generated by microwave discharge of water vapor at low pressure. The CE-FRS instrument exhibited a limit of detection of ∼ 10<sup>10</sup> molecule.cm<sup>−3</sup> in an integration time of 20 s, which is enhanced by a factor of 2.5 compared to cavity-enhanced wavelength modulation spectroscopy involving an off-axis integrated cavity output spectroscopy approach. A time-resolved FRS signal was recorded in a pulsed microwave discharge regime, giving a millisecond time resolution for the measurement of OH concentration profile. The developed instrument provides a potential analytical tool for the measurement of OH concentration for chemical kinetic study in reactor cells.</div></div>","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"424 ","pages":"Article 136901"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925400524016319","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
An instrument based on cavity-enhanced Faraday rotation spectroscopy (CE-FRS) operating at 2.8 μm has been developed for interference-free measurement of OH radicals in the laboratory. By off-axis coupling of a continuous-wave laser into a high finesse optical cavity, FRS signal is obtained from balanced detection of time-integrated light intensity leaking out of the cavity in the presence of magnetic field. Radio-frequency white noise (5–520 MHz) was injected into laser current which reduced intensity fluctuations in cavity transmission, thus improved the signal-to-noise ratio of the spectroscopic signal by a factor of 2. The setup provides a simple and robust spectroscopic instrument for in-situ and highly-selective detection of paramagnetic species. We demonstrated the instrument’s capabilities using OH radical with concentration in the range of 1012 molecule.cm−3, generated by microwave discharge of water vapor at low pressure. The CE-FRS instrument exhibited a limit of detection of ∼ 1010 molecule.cm−3 in an integration time of 20 s, which is enhanced by a factor of 2.5 compared to cavity-enhanced wavelength modulation spectroscopy involving an off-axis integrated cavity output spectroscopy approach. A time-resolved FRS signal was recorded in a pulsed microwave discharge regime, giving a millisecond time resolution for the measurement of OH concentration profile. The developed instrument provides a potential analytical tool for the measurement of OH concentration for chemical kinetic study in reactor cells.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.