Generalizable and replicable brain-based predictions of cognitive functioning across common psychiatric illness

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sidhant Chopra, Elvisha Dhamala, Connor Lawhead, Jocelyn A. Ricard, Edwina R. Orchard, Lijun An, Pansheng Chen, Naren Wulan, Poornima Kumar, Arielle Rubenstein, Julia Moses, Lia Chen, Priscila Levi, Alexander Holmes, Kevin Aquino, Alex Fornito, Ilan Harpaz-Rotem, Laura T. Germine, Justin T. Baker, B. T. Thomas Yeo, Avram J. Holmes
{"title":"Generalizable and replicable brain-based predictions of cognitive functioning across common psychiatric illness","authors":"Sidhant Chopra,&nbsp;Elvisha Dhamala,&nbsp;Connor Lawhead,&nbsp;Jocelyn A. Ricard,&nbsp;Edwina R. Orchard,&nbsp;Lijun An,&nbsp;Pansheng Chen,&nbsp;Naren Wulan,&nbsp;Poornima Kumar,&nbsp;Arielle Rubenstein,&nbsp;Julia Moses,&nbsp;Lia Chen,&nbsp;Priscila Levi,&nbsp;Alexander Holmes,&nbsp;Kevin Aquino,&nbsp;Alex Fornito,&nbsp;Ilan Harpaz-Rotem,&nbsp;Laura T. Germine,&nbsp;Justin T. Baker,&nbsp;B. T. Thomas Yeo,&nbsp;Avram J. Holmes","doi":"10.1126/sciadv.adn1862","DOIUrl":null,"url":null,"abstract":"<div >A primary aim of computational psychiatry is to establish predictive models linking individual differences in brain functioning with symptoms. In particular, cognitive impairments are transdiagnostic, treatment resistant, and associated with poor outcomes. Recent work suggests that thousands of participants may be necessary for the accurate and reliable prediction of cognition, questioning the utility of most patient collection efforts. Here, using a transfer learning framework, we train a model on functional neuroimaging data from the UK Biobank to predict cognitive functioning in three transdiagnostic samples (ns = 101 to 224). We demonstrate prediction performance in all three samples comparable to that reported in larger prediction studies and a boost of up to 116% relative to classical models trained directly in the smaller samples. Critically, the model generalizes across datasets, maintaining performance when trained and tested across independent samples. This work establishes that predictive models derived in large population-level datasets can boost the prediction of cognition across clinical studies.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adn1862","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adn1862","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

A primary aim of computational psychiatry is to establish predictive models linking individual differences in brain functioning with symptoms. In particular, cognitive impairments are transdiagnostic, treatment resistant, and associated with poor outcomes. Recent work suggests that thousands of participants may be necessary for the accurate and reliable prediction of cognition, questioning the utility of most patient collection efforts. Here, using a transfer learning framework, we train a model on functional neuroimaging data from the UK Biobank to predict cognitive functioning in three transdiagnostic samples (ns = 101 to 224). We demonstrate prediction performance in all three samples comparable to that reported in larger prediction studies and a boost of up to 116% relative to classical models trained directly in the smaller samples. Critically, the model generalizes across datasets, maintaining performance when trained and tested across independent samples. This work establishes that predictive models derived in large population-level datasets can boost the prediction of cognition across clinical studies.
以大脑为基础预测常见精神病的认知功能,具有普遍性和可复制性
计算精神病学的一个主要目标是建立预测模型,将大脑功能的个体差异与症状联系起来。特别是,认知障碍具有跨诊断性、抗治疗性,并与不良预后相关。最近的研究表明,要对认知进行准确可靠的预测,可能需要数千名参与者,这就对大多数患者收集工作的效用提出了质疑。在此,我们利用迁移学习框架,对英国生物库的功能神经影像数据进行模型训练,以预测三个跨诊断样本(ns = 101 到 224)的认知功能。我们在所有三个样本中展示了与大型预测研究中报告的预测性能相当的预测性能,与直接在较小样本中训练的经典模型相比,预测性能提高了 116%。重要的是,该模型可跨数据集通用,在独立样本中进行训练和测试时仍能保持性能。这项工作证明,从大型人群数据集中得出的预测模型可以提高临床研究中的认知预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信