Single-molecule profiling of per- and polyfluoroalkyl substances by cyclodextrin mediated host-guest interactions within a biological nanopore

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiaojun Wei, Aditya Choudhary, Leon Y. Wang, Lixing Yang, Mark J. Uline, Mario Tagliazucchi, Qian Wang, Dmitry Bedrov, Chang Liu
{"title":"Single-molecule profiling of per- and polyfluoroalkyl substances by cyclodextrin mediated host-guest interactions within a biological nanopore","authors":"Xiaojun Wei,&nbsp;Aditya Choudhary,&nbsp;Leon Y. Wang,&nbsp;Lixing Yang,&nbsp;Mark J. Uline,&nbsp;Mario Tagliazucchi,&nbsp;Qian Wang,&nbsp;Dmitry Bedrov,&nbsp;Chang Liu","doi":"10.1126/sciadv.adp8134","DOIUrl":null,"url":null,"abstract":"<div >Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp8134","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp8134","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Biological nanopores are increasingly used in molecular sensing due to their single-molecule sensitivity. The detection of per- and polyfluoroalkyl substances (PFAS) like perfluorooctanoic acid and perfluorooctane sulfonic acid is critical due to their environmental prevalence and toxicity. Here, we investigate selective interactions between PFAS and four cyclodextrin (CD) variants (α-, β-, γ-, and 2-hydroxypropyl-γ-CD) within an α-hemolysin nanopore. We demonstrate that PFAS molecules can be electrochemically sensed by interacting with a γ-CD in a nanopore. Using HP-γ-CDs with increased steric resistance, we can identify homologs of the perfluoroalkyl carboxylic acid and the perfluoroalkyl sulfonic acid families and detect common PFAS in drinking water at 0.4 to 2 parts per million levels, which are further lowered to 400 parts per trillion by sample preconcentration. Molecular dynamics simulations reveal the underlying chemical mechanism of PFAS-CD interactions. These insights pave the way toward nanopore-based in situ detection with promises in environmental protection against PFAS pollution.
在生物纳米孔中通过环糊精介导的主客体相互作用对全氟化烷基和多氟化烷基物质进行单分子分析
生物纳米孔因其单分子灵敏度而越来越多地用于分子传感。由于全氟辛酸和全氟辛烷磺酸等全氟和多氟烷基物质(PFAS)在环境中的普遍存在及其毒性,对它们的检测至关重要。在这里,我们研究了 PFAS 与四种环糊精(CD)变体(α-、β-、γ- 和 2-羟丙基-γ-CD)在α-溶血素纳米孔内的选择性相互作用。我们证明,PFAS 分子可通过与纳米孔中的γ-CD 相互作用而进行电化学感应。通过使用具有更强立体抗性的 HP-γ-CD ,我们可以识别全氟烷基羧酸和全氟烷基磺酸家族的同系物,并检测出饮用水中含量为百万分之 0.4 至 2 的常见全氟烷基磺酸,通过样品预浓缩,含量可进一步降低到百万亿分之 400。分子动力学模拟揭示了 PFAS-CD 相互作用的基本化学机制。这些见解为基于纳米孔的原位检测铺平了道路,有望在环境保护中抵御全氟辛烷磺酸污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信