Ocean weather systems on icy moons, with application to Enceladus

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yixiao Zhang, Wanying Kang, John Marshall
{"title":"Ocean weather systems on icy moons, with application to Enceladus","authors":"Yixiao Zhang,&nbsp;Wanying Kang,&nbsp;John Marshall","doi":"10.1126/sciadv.adn6857","DOIUrl":null,"url":null,"abstract":"<div >We explore ocean circulation on a rotating icy moon driven by temperature gradients imposed at its upper surface due to the suppression of the freezing point of water with pressure, as might be induced by ice thickness variations on Enceladus. Using high-resolution simulations, we find that eddies dominate the circulation and arise from baroclinic instability, analogous to Earth’s weather systems. Multiple alternating jets, resembling those of Jupiter’s atmosphere, are sustained by these baroclinic eddies. We establish a theoretical model of the stratification and circulation and present scaling laws for the magnitude of the meridional heat transport. These are tested against numerical simulations. Through identification of key nondimensional numbers, our simplified model is applied to other icy moons. We conclude that baroclinic instability is central to the general circulation of icy moons.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adn6857","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adn6857","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We explore ocean circulation on a rotating icy moon driven by temperature gradients imposed at its upper surface due to the suppression of the freezing point of water with pressure, as might be induced by ice thickness variations on Enceladus. Using high-resolution simulations, we find that eddies dominate the circulation and arise from baroclinic instability, analogous to Earth’s weather systems. Multiple alternating jets, resembling those of Jupiter’s atmosphere, are sustained by these baroclinic eddies. We establish a theoretical model of the stratification and circulation and present scaling laws for the magnitude of the meridional heat transport. These are tested against numerical simulations. Through identification of key nondimensional numbers, our simplified model is applied to other icy moons. We conclude that baroclinic instability is central to the general circulation of icy moons.
冰卫星上的海洋天气系统,并应用于土卫二
我们探索了旋转冰卫星上的海洋环流,该环流是由其上表面的温度梯度驱动的,温度梯度是由于水的凝固点随压力的变化而受到抑制,这可能是由冰封土上的冰厚度变化引起的。通过高分辨率模拟,我们发现漩涡在环流中占主导地位,它产生于气压不稳定性,类似于地球的天气系统。这些气压漩涡维持着多个交替的喷流,与木星大气中的喷流相似。我们建立了分层和环流的理论模型,并提出了经向热传输量的比例定律。这些都经过了数值模拟的检验。通过确定关键的非维数,我们的简化模型被应用于其他冰卫星。我们的结论是,气压不稳定性是冰卫星一般环流的核心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信