Ling Yuan , Pingfeng Yu , Xinyu Huang , Ze Zhao , Linxing Chen , Feng Ju
{"title":"Seasonal succession, host associations, and biochemical roles of aquatic viruses in a eutrophic lake plagued by cyanobacterial blooms","authors":"Ling Yuan , Pingfeng Yu , Xinyu Huang , Ze Zhao , Linxing Chen , Feng Ju","doi":"10.1016/j.envint.2024.109125","DOIUrl":null,"url":null,"abstract":"<div><div>Viruses are implicated to play key roles as biogeochemical mediators and ecological drivers in freshwater ecosystems. However, the dynamics of viruses and host associations throughout the seasons and during blooming periods in eutrophic freshwater ecosystems remain poorly understood. From the water microbiomes of planktonic biomass from Lake Taihu, a large eutrophic freshwater lake in China that experiences annual <em>Microcystis</em>-dominated harmful algal blooms (HABs), we recovered 41,997 unique viral clusters spanning a wide taxonomic range, including 15,139 <em>Caudovirales</em> clusters targeting bacteria and 1,044 NCLDV clusters targeting eukaryotes. The viral community exhibited clear seasonal succession, driven primarily by microbial communities (particularly Cyanobacteria and Planctomycetes) and environmental factors (mainly nutrients and temperature). Host prediction revealed that viral infection had a more distinct impact on bacteria-driven nitrogen pathways than on phosphate cycling. HAB-induced variations in microbial composition and environmental conditions affected viral strategies including viral lifestyles, host range, and virus-encoded auxiliary metabolic genes (vAMGs) distributions. Viruses infecting Proteobacteria and Actinobacteria showed an enhanced lysogenic lifestyle and a narrower host range during HAB peak in summer, while viruses infecting Bacteroidota adopted an opposite strategy. Notably, vAMGs were most abundant before the HAB outbreak in spring, compensating for bacterial metabolic processes of their hosts such as carbohydrates metabolism, photosynthesis, and phosphate regulation. The findings highlight the intricate relationships between viruses, host microbes, and the bloom-associated environment, underscoring the important biochemical roles viruses play in eutrophic freshwater ecosystems.</div></div>","PeriodicalId":308,"journal":{"name":"Environment International","volume":"193 ","pages":"Article 109125"},"PeriodicalIF":10.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment International","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0160412024007116","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Viruses are implicated to play key roles as biogeochemical mediators and ecological drivers in freshwater ecosystems. However, the dynamics of viruses and host associations throughout the seasons and during blooming periods in eutrophic freshwater ecosystems remain poorly understood. From the water microbiomes of planktonic biomass from Lake Taihu, a large eutrophic freshwater lake in China that experiences annual Microcystis-dominated harmful algal blooms (HABs), we recovered 41,997 unique viral clusters spanning a wide taxonomic range, including 15,139 Caudovirales clusters targeting bacteria and 1,044 NCLDV clusters targeting eukaryotes. The viral community exhibited clear seasonal succession, driven primarily by microbial communities (particularly Cyanobacteria and Planctomycetes) and environmental factors (mainly nutrients and temperature). Host prediction revealed that viral infection had a more distinct impact on bacteria-driven nitrogen pathways than on phosphate cycling. HAB-induced variations in microbial composition and environmental conditions affected viral strategies including viral lifestyles, host range, and virus-encoded auxiliary metabolic genes (vAMGs) distributions. Viruses infecting Proteobacteria and Actinobacteria showed an enhanced lysogenic lifestyle and a narrower host range during HAB peak in summer, while viruses infecting Bacteroidota adopted an opposite strategy. Notably, vAMGs were most abundant before the HAB outbreak in spring, compensating for bacterial metabolic processes of their hosts such as carbohydrates metabolism, photosynthesis, and phosphate regulation. The findings highlight the intricate relationships between viruses, host microbes, and the bloom-associated environment, underscoring the important biochemical roles viruses play in eutrophic freshwater ecosystems.
期刊介绍:
Environmental Health publishes manuscripts focusing on critical aspects of environmental and occupational medicine, including studies in toxicology and epidemiology, to illuminate the human health implications of exposure to environmental hazards. The journal adopts an open-access model and practices open peer review.
It caters to scientists and practitioners across all environmental science domains, directly or indirectly impacting human health and well-being. With a commitment to enhancing the prevention of environmentally-related health risks, Environmental Health serves as a public health journal for the community and scientists engaged in matters of public health significance concerning the environment.