Influences of thermal and mass stratification on unsteady magnetohydrodynamics parabolic flow along an infinite vertical plate with periodic temperature variation and exponential mass diffusion in porous medium

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-08-27 DOI:10.1002/htj.23157
Digbash Sahu, Rudra Kanta Deka
{"title":"Influences of thermal and mass stratification on unsteady magnetohydrodynamics parabolic flow along an infinite vertical plate with periodic temperature variation and exponential mass diffusion in porous medium","authors":"Digbash Sahu,&nbsp;Rudra Kanta Deka","doi":"10.1002/htj.23157","DOIUrl":null,"url":null,"abstract":"<p>This study explores the dynamics of unsteady magnetohydrodynamics (MHD) parabolic flow along an infinite vertical plate, emphasizing the effects of thermal and mass stratification in a porous medium subjected to periodic temperature variation and exponential mass diffusion. Utilizing the Laplace transform technique to obtain precise solutions, this study effectively integrates the impacts of both thermal and mass stratification without dependence on approximations. The main goal is to assess how thermal and mass stratification impact MHD flow dynamics, temperature, and concentration profiles under varying conditions. The study provides a thorough comparison of these findings with traditional nonstratified scenarios, presenting a comprehensive analysis of fluid behavior under diverse conditions. The conclusions reveal that thermal and mass stratifications considerably diminish velocity and stabilize temperature distributions, which suggests a damping influence on fluid movement and improved management of diffusion processes. Enhanced Grashof numbers improve heat and mass transfer efficiency, while magnetic and Darcy parameters significantly influence flow resistance and heat transfer characteristics. These conditions also result in higher Nusselt and Sherwood numbers, indicating increased efficiency in heat and mass transfer. In contrast, scenarios without stratification display higher velocities and more unstable temperature and concentration profiles. The findings highlight the critical role of stratification in improving fluid dynamics and increasing the efficiency of heat and mass transfer processes, offering valuable insights for engineering and environmental applications in similar conditions. The main novelty of the research is being the first to use the Laplace transform for exact solutions on combined thermal and mass stratification in MHD flows, enhancing prediction accuracy and process control.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4822-4850"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the dynamics of unsteady magnetohydrodynamics (MHD) parabolic flow along an infinite vertical plate, emphasizing the effects of thermal and mass stratification in a porous medium subjected to periodic temperature variation and exponential mass diffusion. Utilizing the Laplace transform technique to obtain precise solutions, this study effectively integrates the impacts of both thermal and mass stratification without dependence on approximations. The main goal is to assess how thermal and mass stratification impact MHD flow dynamics, temperature, and concentration profiles under varying conditions. The study provides a thorough comparison of these findings with traditional nonstratified scenarios, presenting a comprehensive analysis of fluid behavior under diverse conditions. The conclusions reveal that thermal and mass stratifications considerably diminish velocity and stabilize temperature distributions, which suggests a damping influence on fluid movement and improved management of diffusion processes. Enhanced Grashof numbers improve heat and mass transfer efficiency, while magnetic and Darcy parameters significantly influence flow resistance and heat transfer characteristics. These conditions also result in higher Nusselt and Sherwood numbers, indicating increased efficiency in heat and mass transfer. In contrast, scenarios without stratification display higher velocities and more unstable temperature and concentration profiles. The findings highlight the critical role of stratification in improving fluid dynamics and increasing the efficiency of heat and mass transfer processes, offering valuable insights for engineering and environmental applications in similar conditions. The main novelty of the research is being the first to use the Laplace transform for exact solutions on combined thermal and mass stratification in MHD flows, enhancing prediction accuracy and process control.

热分层和质量分层对多孔介质中沿有周期性温度变化和指数质量扩散的无限垂直板抛物线流动的非稳态磁流体动力学的影响
本研究探讨了沿无限垂直板的非稳态磁流体动力学(MHD)抛物线流动,强调了多孔介质在周期性温度变化和指数质量扩散条件下的热分层和质量分层的影响。本研究利用拉普拉斯变换技术获得精确解,有效地整合了热分层和质量分层的影响,而无需依赖近似值。主要目标是评估在不同条件下,热分层和质量分层如何影响 MHD 流动动力学、温度和浓度剖面。研究将这些发现与传统的非分层方案进行了全面比较,对不同条件下的流体行为进行了综合分析。结论显示,热分层和质量分层大大降低了速度并稳定了温度分布,这表明对流体运动产生了阻尼影响,并改善了对扩散过程的管理。增强的格拉肖夫数提高了传热和传质效率,而磁参数和达西参数则显著影响了流动阻力和传热特性。这些条件也会导致较高的努塞尔特数和舍伍德数,表明传热和传质效率得到提高。相比之下,没有分层的情况下流速更高,温度和浓度分布更不稳定。研究结果强调了分层在改善流体动力学以及提高热量和质量传递过程效率方面的关键作用,为类似条件下的工程和环境应用提供了宝贵的见解。这项研究的主要创新之处在于首次使用拉普拉斯变换来精确求解 MHD 流体中的热分层和质量分层,从而提高了预测精度和过程控制能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信