{"title":"Line spectrum target recognition algorithm based on time-delay autoencoder","authors":"Donghao Ju, Cheng Chi, Yu Li, Haining Huang","doi":"10.1049/rsn2.12601","DOIUrl":null,"url":null,"abstract":"<p>Effective extraction of target features has always been a key issue in target recognition technology in the field of signal processing. Traditional deep learning algorithms often require extensive data for pre-training models to ensure the accuracy of feature extraction. Moreover, it is challenging to completely remove noise due to the complexity of the underwater environment. A Time-Delay Autoencoder (TDAE) is employed to extract ship-radiated noise characteristics by leveraging the strong coherent properties of line spectrum. This approach eliminates the need for previous data to adaptively develop a nonlinear model for line spectrum extraction. The test data was processed using three distinct approaches, and plots of recognition accuracy curves at various signal-to-noise ratios were made. On the dataset utilised in the research, experimental results show that the proposed approach achieves over 75% recognition accuracy, even at a signal-to-noise ratio of −15 dB.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 10","pages":"1681-1690"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12601","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12601","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Effective extraction of target features has always been a key issue in target recognition technology in the field of signal processing. Traditional deep learning algorithms often require extensive data for pre-training models to ensure the accuracy of feature extraction. Moreover, it is challenging to completely remove noise due to the complexity of the underwater environment. A Time-Delay Autoencoder (TDAE) is employed to extract ship-radiated noise characteristics by leveraging the strong coherent properties of line spectrum. This approach eliminates the need for previous data to adaptively develop a nonlinear model for line spectrum extraction. The test data was processed using three distinct approaches, and plots of recognition accuracy curves at various signal-to-noise ratios were made. On the dataset utilised in the research, experimental results show that the proposed approach achieves over 75% recognition accuracy, even at a signal-to-noise ratio of −15 dB.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.