Golay complementary sequence and constant envelope orthogonal frequency-division multiplexing-based for integrated sensing and communication with mutual information analysis
IF 1.4 4区 管理学Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Xinyu Chen, Bin Rao, Dan Song, Wei Wang, Xiaohai Zou
{"title":"Golay complementary sequence and constant envelope orthogonal frequency-division multiplexing-based for integrated sensing and communication with mutual information analysis","authors":"Xinyu Chen, Bin Rao, Dan Song, Wei Wang, Xiaohai Zou","doi":"10.1049/rsn2.12622","DOIUrl":null,"url":null,"abstract":"<p>The design of waveforms plays a critical role in integrated sensing and communication (ISAC) systems. An ISAC waveform with a 0dB peak-to-average power ratio (PAPR) is designed by combining a Golay complementary sequence with a constant envelope orthogonal frequency-division multiplexing. By adjusting the phase modulation parameters, this waveform allows for a trade-offs between communication and sensing capabilities. The authors focus on several key performance metrics for the proposed ISAC waveform, notably using mutual information as a holistic performance indicator to assess both sensing and communication effectiveness. Through extensive numerical simulations, the authors demonstrate that the ISAC waveform significantly enhances detection probability compared to traditional phase-modulated waveforms. The findings suggest that this approach is beneficial for designing low PAPR phase-modulated ISAC waveforms, enhancing both the functionality and efficiency of ISAC systems.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 10","pages":"1848-1858"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12622","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12622","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The design of waveforms plays a critical role in integrated sensing and communication (ISAC) systems. An ISAC waveform with a 0dB peak-to-average power ratio (PAPR) is designed by combining a Golay complementary sequence with a constant envelope orthogonal frequency-division multiplexing. By adjusting the phase modulation parameters, this waveform allows for a trade-offs between communication and sensing capabilities. The authors focus on several key performance metrics for the proposed ISAC waveform, notably using mutual information as a holistic performance indicator to assess both sensing and communication effectiveness. Through extensive numerical simulations, the authors demonstrate that the ISAC waveform significantly enhances detection probability compared to traditional phase-modulated waveforms. The findings suggest that this approach is beneficial for designing low PAPR phase-modulated ISAC waveforms, enhancing both the functionality and efficiency of ISAC systems.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.