ANN-driven insights into heat and mass transfer dynamics in chemical reactive fluids across variable-thickness surfaces

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-08-12 DOI:10.1002/htj.23144
Mumtaz Khan, Mudassar Imran
{"title":"ANN-driven insights into heat and mass transfer dynamics in chemical reactive fluids across variable-thickness surfaces","authors":"Mumtaz Khan,&nbsp;Mudassar Imran","doi":"10.1002/htj.23144","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the heat and mass transfer dynamics in exothermic, chemically reactive fluids over variable-thickness surfaces using advanced numerical methods and artificial neural networks (ANN). The importance of understanding these processes lies in their significant industrial applications, such as in chemical reactors and heat exchangers. We transformed nonlinear partial differential equations into ordinary differential equations and used the bvp4c numerical method to generate a comprehensive data set. The ANN model, trained with the Levenberg–Marquardt algorithm, was evaluated for its accuracy in simulating complex fluid dynamics and thermosolutal transport phenomena. Our results revealed that increasing the second-grade fluid parameter <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>α</mi>\n \n <mn>1</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> enhanced skin friction by 20.38%, heat transfer rate by 1.16%, and mass transfer rate by 4.06%. The ANN model demonstrated high predictive precision with a validation mean squared error of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1.145</mn>\n \n <mo>×</mo>\n \n <msup>\n <mn>10</mn>\n \n <mrow>\n <mo>−</mo>\n \n <mn>9</mn>\n </mrow>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>. These findings highlight the effectiveness of the ANN methodology in providing precise simulations of fluid dynamics, which is crucial for optimizing industrial processes.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4551-4571"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the heat and mass transfer dynamics in exothermic, chemically reactive fluids over variable-thickness surfaces using advanced numerical methods and artificial neural networks (ANN). The importance of understanding these processes lies in their significant industrial applications, such as in chemical reactors and heat exchangers. We transformed nonlinear partial differential equations into ordinary differential equations and used the bvp4c numerical method to generate a comprehensive data set. The ANN model, trained with the Levenberg–Marquardt algorithm, was evaluated for its accuracy in simulating complex fluid dynamics and thermosolutal transport phenomena. Our results revealed that increasing the second-grade fluid parameter α 1 enhanced skin friction by 20.38%, heat transfer rate by 1.16%, and mass transfer rate by 4.06%. The ANN model demonstrated high predictive precision with a validation mean squared error of 1.145 × 10 9 . These findings highlight the effectiveness of the ANN methodology in providing precise simulations of fluid dynamics, which is crucial for optimizing industrial processes.

以 ANN 为驱动深入了解化学反应流体在可变厚度表面上的传热和传质动力学
本研究采用先进的数值方法和人工神经网络(ANN),研究了放热、化学反应流体在可变厚度表面上的传热和传质动力学。了解这些过程的重要性在于它们在化学反应器和热交换器等工业领域的重要应用。我们将非线性偏微分方程转化为常微分方程,并使用 bvp4c 数值方法生成了一个综合数据集。使用 Levenberg-Marquardt 算法训练的 ANN 模型在模拟复杂流体动力学和热固性传输现象方面的准确性得到了评估。结果表明,增加二级流体参数 α 1 可使表皮摩擦力增加 20.38%,传热速率增加 1.16%,传质速率增加 4.06%。ANN 模型的预测精度很高,验证均方误差为 1.145 × 10 - 9。这些发现凸显了 ANN 方法在提供流体动力学精确模拟方面的有效性,而这对优化工业流程至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信