Unravelling the performance of atmospheric radiative transfer schemes in the simulation of mean surface climate in Central Africa using the RegCM5 climate model
IF 3.5 3区 地球科学Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
E. E. Djouka Kankeu, A. J. Komkoua Mbienda, P. C. Choumbou, G. M. Guenang, G. P. Demanou Koudjou, C. Mbane Mbioule
{"title":"Unravelling the performance of atmospheric radiative transfer schemes in the simulation of mean surface climate in Central Africa using the RegCM5 climate model","authors":"E. E. Djouka Kankeu, A. J. Komkoua Mbienda, P. C. Choumbou, G. M. Guenang, G. P. Demanou Koudjou, C. Mbane Mbioule","doi":"10.1002/joc.8611","DOIUrl":null,"url":null,"abstract":"<p>The theory of radiative transfer in the atmosphere is crucial in the study of climate, because radiative exchanges are at the origin of the atmospheric dynamics. It is therefore important to evaluate this phenomenon in order to be able to take effective measures to tackle climate change. The objective of this work is to evaluate the capability of the RegCM5 climate model to reproduce radiative transfer over Central Africa. The analysis is carried out over a 10-year period, from January 2002 to December 2011 preceded by 1 year as spin-up. RegCM5 model were evaluated using the ERA5 dataset for the radiative transfer parameters (the shortwave radiation [SWR], longwave radiation [LWR], cloud cover [CLT], surface albedo [ALB] and surface temperature), as well as CHIRPS dataset for precipitation. Three subregions were identified for more specific analysis of the model, namely the Sahel, Congo basin and Cameroon highlands. Two radiative schemes were used: the radiative scheme of the community climate model (CCM) and Rapid Radiative Transfer Model (RRTM). The assessment of radiative transfer parameters was carried out by examining their seasonal variability and annual cycles using data from two RegCM5 experiments, RegCM5-CCM3 and RegCM5-RRTM. Before this assessment, a sensibility analysis to convective schemes carried out with the default RegCM5 radiative scheme (CCM3) shows that Grell scheme with Arakawa and Shulber closure is the best scheme to represent key radiation parameters (LWR and SWR). This convective scheme is therefore used for assessing the two Radiative transfer schemes. Results show that both RegCM5 experiments simulate relatively well the variables linked to radiative transfer for the four seasons of the year. However, RegCM5 with RRTM as radiative scheme depicts better performance over all subregions and seasons, suggesting that the choice of this scheme does not depend on land cover, topography and rainfall regimes in a complex region such as Central Africa.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 13","pages":"4809-4828"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8611","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The theory of radiative transfer in the atmosphere is crucial in the study of climate, because radiative exchanges are at the origin of the atmospheric dynamics. It is therefore important to evaluate this phenomenon in order to be able to take effective measures to tackle climate change. The objective of this work is to evaluate the capability of the RegCM5 climate model to reproduce radiative transfer over Central Africa. The analysis is carried out over a 10-year period, from January 2002 to December 2011 preceded by 1 year as spin-up. RegCM5 model were evaluated using the ERA5 dataset for the radiative transfer parameters (the shortwave radiation [SWR], longwave radiation [LWR], cloud cover [CLT], surface albedo [ALB] and surface temperature), as well as CHIRPS dataset for precipitation. Three subregions were identified for more specific analysis of the model, namely the Sahel, Congo basin and Cameroon highlands. Two radiative schemes were used: the radiative scheme of the community climate model (CCM) and Rapid Radiative Transfer Model (RRTM). The assessment of radiative transfer parameters was carried out by examining their seasonal variability and annual cycles using data from two RegCM5 experiments, RegCM5-CCM3 and RegCM5-RRTM. Before this assessment, a sensibility analysis to convective schemes carried out with the default RegCM5 radiative scheme (CCM3) shows that Grell scheme with Arakawa and Shulber closure is the best scheme to represent key radiation parameters (LWR and SWR). This convective scheme is therefore used for assessing the two Radiative transfer schemes. Results show that both RegCM5 experiments simulate relatively well the variables linked to radiative transfer for the four seasons of the year. However, RegCM5 with RRTM as radiative scheme depicts better performance over all subregions and seasons, suggesting that the choice of this scheme does not depend on land cover, topography and rainfall regimes in a complex region such as Central Africa.
期刊介绍:
The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions