The scaling limit of random cubic planar graphs

IF 1 2区 数学 Q1 MATHEMATICS
Benedikt Stufler
{"title":"The scaling limit of random cubic planar graphs","authors":"Benedikt Stufler","doi":"10.1112/jlms.70018","DOIUrl":null,"url":null,"abstract":"<p>We study the random cubic planar graph <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathsf {C}_n$</annotation>\n </semantics></math> with an even number <span></span><math>\n <semantics>\n <mi>n</mi>\n <annotation>$n$</annotation>\n </semantics></math> of vertices. We show that the Brownian map arises as Gromov–Hausdorff–Prokhorov scaling limit of <span></span><math>\n <semantics>\n <msub>\n <mi>C</mi>\n <mi>n</mi>\n </msub>\n <annotation>$\\mathsf {C}_n$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>∈</mo>\n <mn>2</mn>\n <mi>N</mi>\n </mrow>\n <annotation>$n \\in 2 \\mathbb {N}$</annotation>\n </semantics></math> tends to infinity, after rescaling distances by <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <msup>\n <mi>n</mi>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n <mo>/</mo>\n <mn>4</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\gamma n^{-1/4}$</annotation>\n </semantics></math> for a specific constant <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\gamma &amp;gt;0$</annotation>\n </semantics></math>. This is the first time a model of random graphs that are not embedded into the plane is shown to converge to the Brownian map. Our approach features a new method that allows us to relate distances on random graphs to first-passage percolation distances on their 3-connected core.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70018","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70018","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the random cubic planar graph C n $\mathsf {C}_n$ with an even number n $n$ of vertices. We show that the Brownian map arises as Gromov–Hausdorff–Prokhorov scaling limit of C n $\mathsf {C}_n$ as n 2 N $n \in 2 \mathbb {N}$ tends to infinity, after rescaling distances by γ n 1 / 4 $\gamma n^{-1/4}$ for a specific constant γ > 0 $\gamma &gt;0$ . This is the first time a model of random graphs that are not embedded into the plane is shown to converge to the Brownian map. Our approach features a new method that allows us to relate distances on random graphs to first-passage percolation distances on their 3-connected core.

Abstract Image

随机立方平面图的缩放极限
我们研究了偶数个顶点的随机立方平面图 C n $\mathsf {C}_n$。我们证明,当 n ∈ 2 N $n \in 2 \mathbb {N}$趋于无穷大时,布朗映射作为 C n $mathsf {C}_n$ 的格罗莫夫-豪斯多夫-普罗霍罗夫缩放极限而出现,在对特定常数 γ > 0 $\gamma &gt;0$ 对距离进行 γ n - 1 / 4 $\gamma n^{-1/4}$ 重缩放之后。这是首次证明未嵌入平面的随机图模型收敛于布朗图。我们的方法采用了一种新方法,使我们能够将随机图上的距离与它们的 3 连接核心上的第一通道渗流距离联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信