Impact of stretching and shrinking on the thermal profile and efficiency of a wet and porous longitudinal fin in motion subject to convection and radiation

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-08-07 DOI:10.1002/htj.23145
S. Lalith Kumar, H. G. Nagaraja, B. J. Gireesha
{"title":"Impact of stretching and shrinking on the thermal profile and efficiency of a wet and porous longitudinal fin in motion subject to convection and radiation","authors":"S. Lalith Kumar,&nbsp;H. G. Nagaraja,&nbsp;B. J. Gireesha","doi":"10.1002/htj.23145","DOIUrl":null,"url":null,"abstract":"<p>We consider heat transfer with convection and radiation effect on a longitudinal wet and porous fin. The trapezoidal fin moving at a constant speed is subject to stretching and shrinking, and their influence on the fin's heat transfer rate and thermal distribution is investigated. The governing equation of the model mentioned above is nondimensionalized, and the resultant second-order nonlinear boundary value problem is solved numerically using the Chebyshev collocation method and validated using the shooting technique. All the simulations are carried out using MATLAB software. The impact of the critical dimensionless parameters on the fin tip temperature, the thermal profile, and the base heat transfer rate are analyzed graphically. Fin efficiency is also computed, and the influence of the pertinent parameters on it is inferred. For a moving fin, the shrinking mechanism favors a faster base heat transfer, an uptick of about 9%, and the stretching fin enhances thermal distribution and efficiency by around 3% and 14%, respectively. The rise is further accelerated with the enhancement of the Peclet number. The fin tapering from that of a rectangular profile (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n \n <mo>=</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math>) helps achieve a faster heat transfer rate along the fin length, a gain of nearly 22%, when the fin taper ratio <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>C</mi>\n </mrow>\n </mrow>\n </semantics></math> varies from 0 to 0.8.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4488-4509"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider heat transfer with convection and radiation effect on a longitudinal wet and porous fin. The trapezoidal fin moving at a constant speed is subject to stretching and shrinking, and their influence on the fin's heat transfer rate and thermal distribution is investigated. The governing equation of the model mentioned above is nondimensionalized, and the resultant second-order nonlinear boundary value problem is solved numerically using the Chebyshev collocation method and validated using the shooting technique. All the simulations are carried out using MATLAB software. The impact of the critical dimensionless parameters on the fin tip temperature, the thermal profile, and the base heat transfer rate are analyzed graphically. Fin efficiency is also computed, and the influence of the pertinent parameters on it is inferred. For a moving fin, the shrinking mechanism favors a faster base heat transfer, an uptick of about 9%, and the stretching fin enhances thermal distribution and efficiency by around 3% and 14%, respectively. The rise is further accelerated with the enhancement of the Peclet number. The fin tapering from that of a rectangular profile ( C = 0 ) helps achieve a faster heat transfer rate along the fin length, a gain of nearly 22%, when the fin taper ratio C varies from 0 to 0.8.

拉伸和收缩对受对流和辐射影响的湿式多孔纵向翅片在运动中的热曲线和效率的影响
我们考虑了纵向多孔湿鳍片上具有对流和辐射效应的传热。匀速运动的梯形翅片受到拉伸和收缩的影响,研究了它们对翅片传热速率和热分布的影响。对上述模型的支配方程进行了非尺寸化处理,并使用切比雪夫配位法对由此产生的二阶非线性边界值问题进行了数值求解,同时使用射击技术进行了验证。所有模拟均使用 MATLAB 软件进行。通过图形分析了临界无量纲参数对鳍片顶端温度、热曲线和基本传热率的影响。还计算了翅片效率,并推断了相关参数对其的影响。对于移动鳍片,收缩机制有利于加快基础传热,上升幅度约为 9%,而拉伸鳍片可分别提高热分布和效率约 3% 和 14%。随着佩克莱特数的增加,热量的增加速度进一步加快。当翅片锥度比 C 在 0 到 0.8 之间变化时,从矩形轮廓(C = 0)变细的翅片有助于实现沿翅片长度方向更快的热传导率,增幅接近 22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信