A multiple applications study of motile microorganisms past a vertical surface with double-diffusive binary base fluid

IF 2.8 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2024-08-07 DOI:10.1002/htj.23142
Battina Madhusudhana Rao, Putta Durgaprasad, Gurram Dharmaiah, Saeed Dinarvand, Saurav Gupta
{"title":"A multiple applications study of motile microorganisms past a vertical surface with double-diffusive binary base fluid","authors":"Battina Madhusudhana Rao,&nbsp;Putta Durgaprasad,&nbsp;Gurram Dharmaiah,&nbsp;Saeed Dinarvand,&nbsp;Saurav Gupta","doi":"10.1002/htj.23142","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the various uses of density of motile microorganisms in the context of the flow of a binary base fluid with double diffusion past a vertical surface. The research aims to comprehend the interactions between motile microorganisms and the fluid dynamics, as well as the heat and mass transport mechanisms in this system. The analysis involves mathematically constructing the governing equations, transforming them into dimensionless nonlinear ordinary differential equations using similarity transformations, and numerically solving them using the MATLAB bvp4c solver. An analysis of the influence of several parameters on the profiles of velocity, temperature, concentration, nanoparticle concentration, and density of motile microorganisms is conducted using graphical representation. The findings demonstrate that boosting the thermophoresis parameter intensifies the temperature profile. In addition, an increase in the nanofluid Schmidt number results in a larger concentration of nanoparticles, whereas a higher bioconvection Lewis number reduces the density of the motile microorganism profile. These findings may find use in biomedical engineering as well as industrial processes that include enhancing the efficiency of mass transfer and bioconvection. Numeric simulation prophesies 99.9% for both shear stress and heat transfer rate intensification for Prandtl values are noticed.</p>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"53 8","pages":"4468-4487"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the various uses of density of motile microorganisms in the context of the flow of a binary base fluid with double diffusion past a vertical surface. The research aims to comprehend the interactions between motile microorganisms and the fluid dynamics, as well as the heat and mass transport mechanisms in this system. The analysis involves mathematically constructing the governing equations, transforming them into dimensionless nonlinear ordinary differential equations using similarity transformations, and numerically solving them using the MATLAB bvp4c solver. An analysis of the influence of several parameters on the profiles of velocity, temperature, concentration, nanoparticle concentration, and density of motile microorganisms is conducted using graphical representation. The findings demonstrate that boosting the thermophoresis parameter intensifies the temperature profile. In addition, an increase in the nanofluid Schmidt number results in a larger concentration of nanoparticles, whereas a higher bioconvection Lewis number reduces the density of the motile microorganism profile. These findings may find use in biomedical engineering as well as industrial processes that include enhancing the efficiency of mass transfer and bioconvection. Numeric simulation prophesies 99.9% for both shear stress and heat transfer rate intensification for Prandtl values are noticed.

通过双扩散二元基质流体垂直表面运动微生物的多重应用研究
本研究以具有双重扩散的二元基质流体流过垂直表面为背景,研究了运动微生物密度的各种用途。研究旨在理解运动微生物与流体动力学之间的相互作用,以及该系统中的热量和质量传输机制。分析包括用数学方法构建控制方程,使用相似变换将其转换为无量纲非线性常微分方程,并使用 MATLAB bvp4c 求解器对其进行数值求解。使用图形表示法分析了几个参数对运动微生物的速度、温度、浓度、纳米粒子浓度和密度曲线的影响。研究结果表明,提高热泳参数会增强温度曲线。此外,纳米流体施密特数的增加会导致纳米粒子浓度的增加,而较高的生物对流路易斯数则会降低运动微生物的密度。这些发现可用于生物医学工程和工业流程,包括提高传质和生物对流的效率。数值模拟预言了 99.9% 的剪切应力和热传导率增强普朗特值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信