Soil health impact of long-term sugarcane vinasse recycling

IF 3.2 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Felipe Bonini da Luz, Leandro Carolino Gonzaga, Mauricio Roberto Cherubin, Guilherme Adalberto Ferreira Castioni, João Luis Nunes Carvalho
{"title":"Soil health impact of long-term sugarcane vinasse recycling","authors":"Felipe Bonini da Luz,&nbsp;Leandro Carolino Gonzaga,&nbsp;Mauricio Roberto Cherubin,&nbsp;Guilherme Adalberto Ferreira Castioni,&nbsp;João Luis Nunes Carvalho","doi":"10.1002/bbb.2688","DOIUrl":null,"url":null,"abstract":"<p>The efficient use of vinasse, the primary byproduct of sugarcane ethanol production, is important for the economic and environmental sustainability of the industry. Few studies have quantified the soil health response to long-term vinasse application, even though this byproduct is generally applied as a potassium (K) source in sugarcane fields. The Soil Management Assessment Framework (SMAF) was used to assess the integrated soil health response in soils with contrasting textures. Chemical, physical, and biological indicators were selected, measured, and integrated into a soil health index for clay- and sandy-textured soils in Brazil. Overall, the application of vinasse improved soil health components in both soils. The results showed that the benefits of vinasse go beyond increasing the K content. Vinasse application showed increased soil organic carbon content, nutrient recycling, and soil physical quality. The long-term application of vinasse increased the soil health from 49% to 62% in the clayey soil and from 43% to 61% in the sandy clay soil. The findings therefore revealed the potential of vinasse application to reduce the need for synthetic fertilizer and promote the circular economy and soil health regardless of soil type. This study verifies that the long-term application of vinasse to sandy- and clay-texture soils in Brazil has both economic and environmental benefits because it recycles an important ethanol byproduct and enhances soil health.</p>","PeriodicalId":55380,"journal":{"name":"Biofuels Bioproducts & Biorefining-Biofpr","volume":"18 6","pages":"2064-2077"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels Bioproducts & Biorefining-Biofpr","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bbb.2688","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient use of vinasse, the primary byproduct of sugarcane ethanol production, is important for the economic and environmental sustainability of the industry. Few studies have quantified the soil health response to long-term vinasse application, even though this byproduct is generally applied as a potassium (K) source in sugarcane fields. The Soil Management Assessment Framework (SMAF) was used to assess the integrated soil health response in soils with contrasting textures. Chemical, physical, and biological indicators were selected, measured, and integrated into a soil health index for clay- and sandy-textured soils in Brazil. Overall, the application of vinasse improved soil health components in both soils. The results showed that the benefits of vinasse go beyond increasing the K content. Vinasse application showed increased soil organic carbon content, nutrient recycling, and soil physical quality. The long-term application of vinasse increased the soil health from 49% to 62% in the clayey soil and from 43% to 61% in the sandy clay soil. The findings therefore revealed the potential of vinasse application to reduce the need for synthetic fertilizer and promote the circular economy and soil health regardless of soil type. This study verifies that the long-term application of vinasse to sandy- and clay-texture soils in Brazil has both economic and environmental benefits because it recycles an important ethanol byproduct and enhances soil health.

甘蔗渣长期循环利用对土壤健康的影响
甘蔗渣是甘蔗乙醇生产的主要副产品,有效利用甘蔗渣对该行业的经济和环境可持续性非常重要。尽管甘蔗渣副产品通常被用作甘蔗田的钾(K)来源,但很少有研究对长期施用甘蔗渣对土壤健康的影响进行量化。土壤管理评估框架(SMAF)被用来评估质地不同的土壤对土壤健康的综合反应。对化学、物理和生物指标进行了选择、测量,并将其整合为巴西粘质土壤和沙质土壤的土壤健康指数。总体而言,施用蔗渣改善了这两种土壤的健康成分。结果表明,蔗渣的益处不仅仅在于增加钾含量。施用蔗渣提高了土壤有机碳含量、养分循环和土壤物理质量。长期施用蔗渣后,粘质土壤的土壤健康度从 49% 提高到 62%,沙质粘质土壤的土壤健康度从 43% 提高到 61%。因此,研究结果表明,无论土壤类型如何,施用蔗渣都能减少对合成肥料的需求,促进循环经济和土壤健康。这项研究证实,在巴西的沙质和粘质土壤中长期施用蔗渣既有经济效益,又有环境效益,因为它既回收了重要的乙醇副产品,又提高了土壤健康水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
5.10%
发文量
122
审稿时长
4.5 months
期刊介绍: Biofuels, Bioproducts and Biorefining is a vital source of information on sustainable products, fuels and energy. Examining the spectrum of international scientific research and industrial development along the entire supply chain, The journal publishes a balanced mixture of peer-reviewed critical reviews, commentary, business news highlights, policy updates and patent intelligence. Biofuels, Bioproducts and Biorefining is dedicated to fostering growth in the biorenewables sector and serving its growing interdisciplinary community by providing a unique, systems-based insight into technologies in these fields as well as their industrial development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信