The Thickness of Some Complete Bipartite and Tripartite Graphs

Pub Date : 2024-11-06 DOI:10.1007/s10255-024-1128-1
Si-wei Hu, Yi-chao Chen
{"title":"The Thickness of Some Complete Bipartite and Tripartite Graphs","authors":"Si-wei Hu,&nbsp;Yi-chao Chen","doi":"10.1007/s10255-024-1128-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we obtain the thickness for some complete <i>k</i>–partite graphs for <i>k</i> = 2, 3. We first compute the thickness of <i>K</i><sub><i>n,n</i>+8</sub> by giving a planar decomposition of <i>K</i><sub>4<i>k</i>−1,4<i>k</i>+7</sub> for <i>k</i> ≥ 3. Then, two planar decompositions for <i>K</i><sub>1,<i>g,g</i>(<i>g</i>−1)</sub> when <i>g</i> is even and for <span>\\(K_{1,g,{1\\over{2}}(g-1)^{2}}\\)</span> when <i>g</i> is odd are obtained. Using a recursive construction, we also obtain the thickness for some complete tripartite graphs. The results here support the long-standing conjecture that the thickness of <i>K</i><sub><i>m,n</i></sub> is <span>\\(\\lceil {mn\\over{2(m+n-2)}}\\rceil\\)</span> for any positive integers <i>m, n</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1128-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we obtain the thickness for some complete k–partite graphs for k = 2, 3. We first compute the thickness of Kn,n+8 by giving a planar decomposition of K4k−1,4k+7 for k ≥ 3. Then, two planar decompositions for K1,g,g(g−1) when g is even and for \(K_{1,g,{1\over{2}}(g-1)^{2}}\) when g is odd are obtained. Using a recursive construction, we also obtain the thickness for some complete tripartite graphs. The results here support the long-standing conjecture that the thickness of Km,n is \(\lceil {mn\over{2(m+n-2)}}\rceil\) for any positive integers m, n.

分享
查看原文
一些完整二方图和三方图的厚度
在本文中,我们得到了 k = 2, 3 时一些完整 k 部分图的厚度。我们首先通过给出 k≥3 时 K4k-1,4k+7 的平面分解来计算 Kn,n+8 的厚度。然后,当 g 为偶数时,得到 K1,g,g(g-1)的两个平面分解;当 g 为奇数时,得到 \(K_{1,g,{1/over{2}}(g-1)^{2}}\) 的两个平面分解。通过递归构造,我们还得到了一些完整三方图的厚度。这里的结果支持了一个存在已久的猜想,即对于任意正整数 m、n,Km,n 的厚度都是\(\lceil {mn\over{2(m+n-2)}}\rceil\) 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信