{"title":"Global Weak Solutions to a Fluid-particle System of an Incompressible Non-Newtonian Fluid and the Vlasov Equation","authors":"Pei-yu Zhang, Li Fang, Zhen-hua Guo","doi":"10.1007/s10255-024-1080-0","DOIUrl":null,"url":null,"abstract":"<div><p>The purpose of this work is to investigate the existence and uniqueness of weak solutions to the initial-boundary value problem for a coupled system of an incompressible non-Newtonian fluid and the Vlasov equation. The coupling arises from the acceleration in the Vlasov equation and the drag force in the incompressible viscous non-Newtonian fluid with the stress tensor of a power-law structure for <span>\\(p\\geqslant {11\\over 5}\\)</span>. The main idea of the existence analysis is to reformulate the coupled system by means of a so-called truncation function. The advantage of the new formulation is to control the external force term <span>\\(G=-\\int_\\mathbb{{R}^{d}}(\\mathbf{u}-\\mathbf{v})fd\\mathbf{v}\\ (d=2,3)\\)</span>. The global existence of weak solutions to the reformulated system is shown by using the Faedo-Galerkin method and weak compactness techniques. We further prove the uniqueness of weak solutions to the considered system.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1080-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The purpose of this work is to investigate the existence and uniqueness of weak solutions to the initial-boundary value problem for a coupled system of an incompressible non-Newtonian fluid and the Vlasov equation. The coupling arises from the acceleration in the Vlasov equation and the drag force in the incompressible viscous non-Newtonian fluid with the stress tensor of a power-law structure for \(p\geqslant {11\over 5}\). The main idea of the existence analysis is to reformulate the coupled system by means of a so-called truncation function. The advantage of the new formulation is to control the external force term \(G=-\int_\mathbb{{R}^{d}}(\mathbf{u}-\mathbf{v})fd\mathbf{v}\ (d=2,3)\). The global existence of weak solutions to the reformulated system is shown by using the Faedo-Galerkin method and weak compactness techniques. We further prove the uniqueness of weak solutions to the considered system.