A hybrid optical feedback method for narrowing and frequency-stabilizing diode lasers

IF 2 3区 物理与天体物理 Q3 OPTICS
Hui Liang, Yu R. Sun, Shui-Ming Hu
{"title":"A hybrid optical feedback method for narrowing and frequency-stabilizing diode lasers","authors":"Hui Liang,&nbsp;Yu R. Sun,&nbsp;Shui-Ming Hu","doi":"10.1007/s00340-024-08343-5","DOIUrl":null,"url":null,"abstract":"<div><p>Lasers with narrow linewidths and long-term frequency stability are required in various applications such as precision measurement and optical frequency reference. Here, we propose a hybrid method that combines techniques of optical feedback and optical heterodyne modulation locking to an external Fabry-Perot cavity to reduce the linewidth and frequency drift of the laser. The method is demonstrated on a distributed feedback laser with a free-running linewidth of 2 MHz. The frequency noise power density spectrum shows a reduction of 50 dB in the low-frequency range and 30 dB for white noise, and the linewidth has been reduced to 20 kHz. The lock can be maintained for days. This method can be applied to various lasers of different wavelengths.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"130 12","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-024-08343-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lasers with narrow linewidths and long-term frequency stability are required in various applications such as precision measurement and optical frequency reference. Here, we propose a hybrid method that combines techniques of optical feedback and optical heterodyne modulation locking to an external Fabry-Perot cavity to reduce the linewidth and frequency drift of the laser. The method is demonstrated on a distributed feedback laser with a free-running linewidth of 2 MHz. The frequency noise power density spectrum shows a reduction of 50 dB in the low-frequency range and 30 dB for white noise, and the linewidth has been reduced to 20 kHz. The lock can be maintained for days. This method can be applied to various lasers of different wavelengths.

用于二极管激光器窄化和稳频的混合光反馈方法
精密测量和光学频率基准等各种应用都需要具有窄线宽和长期频率稳定性的激光器。在这里,我们提出了一种混合方法,将光反馈和光外差调制锁定技术结合到外部法布里-珀罗腔上,以降低激光器的线宽和频率漂移。该方法在自由运行线宽为 2 MHz 的分布式反馈激光器上进行了演示。频率噪声功率密度频谱显示,低频范围的噪声降低了 50 dB,白噪声降低了 30 dB,线宽降低到 20 kHz。锁定可维持数天。这种方法可用于不同波长的各种激光器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Physics B
Applied Physics B 物理-光学
CiteScore
4.00
自引率
4.80%
发文量
202
审稿时长
3.0 months
期刊介绍: Features publication of experimental and theoretical investigations in applied physics Offers invited reviews in addition to regular papers Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field. In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信