Viatcheslav F. Mukhanov, Yaron Oz, Alexander S. Sorin
{"title":"Gravitationally dominated instantons and instability of dS, AdS and Minkowski spaces","authors":"Viatcheslav F. Mukhanov, Yaron Oz, Alexander S. Sorin","doi":"10.1007/JHEP11(2024)021","DOIUrl":null,"url":null,"abstract":"<p>We study the decay of the false vacuum in the regime where the quantum field theory analysis is not valid, since gravitational effects become important. This happens when the height of the barrier separating the false and the true vacuum is large, and it has implications for the instability of de Sitter, Minkowski and anti-de Sitter vacua. We carry out the calculations for a scalar field with a potential coupled to gravity, and work within the thin-wall approximation, where the bubble wall is thin compared to the size of the bubble. We show that the false de Sitter vacuum is unstable, independently of the height of the potential and the relative depth of the true vacuum compared to the false vacuum. The false Minkowski and anti-de Sitter vacua can be stable despite the existence of a lower energy true vacuum. However, when the relative depth of the true and false vacua exceeds a critical value, which depends on the potential of the false vacuum and the height of the barrier, then the false Minkowski and anti-de Sitter vacua become unstable. We calculate the probability for the decay of the false de Sitter, Minkowski and anti-de Sitter vacua, as a function of the parameters characterizing the field potential.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)021.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)021","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We study the decay of the false vacuum in the regime where the quantum field theory analysis is not valid, since gravitational effects become important. This happens when the height of the barrier separating the false and the true vacuum is large, and it has implications for the instability of de Sitter, Minkowski and anti-de Sitter vacua. We carry out the calculations for a scalar field with a potential coupled to gravity, and work within the thin-wall approximation, where the bubble wall is thin compared to the size of the bubble. We show that the false de Sitter vacuum is unstable, independently of the height of the potential and the relative depth of the true vacuum compared to the false vacuum. The false Minkowski and anti-de Sitter vacua can be stable despite the existence of a lower energy true vacuum. However, when the relative depth of the true and false vacua exceeds a critical value, which depends on the potential of the false vacuum and the height of the barrier, then the false Minkowski and anti-de Sitter vacua become unstable. We calculate the probability for the decay of the false de Sitter, Minkowski and anti-de Sitter vacua, as a function of the parameters characterizing the field potential.
期刊介绍:
The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal.
Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles.
JHEP presently encompasses the following areas of theoretical and experimental physics:
Collider Physics
Underground and Large Array Physics
Quantum Field Theory
Gauge Field Theories
Symmetries
String and Brane Theory
General Relativity and Gravitation
Supersymmetry
Mathematical Methods of Physics
Mostly Solvable Models
Astroparticles
Statistical Field Theories
Mostly Weak Interactions
Mostly Strong Interactions
Quantum Field Theory (phenomenology)
Strings and Branes
Phenomenological Aspects of Supersymmetry
Mostly Strong Interactions (phenomenology).