Non-supersymmetric heterotic strings and chiral CFTs

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Héctor Parra De Freitas
{"title":"Non-supersymmetric heterotic strings and chiral CFTs","authors":"Héctor Parra De Freitas","doi":"10.1007/JHEP11(2024)002","DOIUrl":null,"url":null,"abstract":"<p>Non-supersymmetric heterotic strings share various properties with their supersymmetric counterparts. Torus compactifications of the latter live in a component of the moduli space of string vacua with 16 supercharges, and various asymmetric orbifolds thereof realize vacua in other components, exhibiting qualitative differences such as rank reduction. We set out to study the analogous problem for non-supersymmetric heterotic strings, framing it in relation to chiral fermionic CFTs with central charge 24, which were classified recently. We find that for the case analogous to the so-called CHL string, which has gauge group rank reduced by 8, there are in total four non-supersymmetric versions. These include the well known <i>E</i><sub>8</sub> string and three other constructions a la CHL, which can be distinguished qualitatively by how tachyons appear in their classical moduli spaces. We also discuss the classification problem for lower rank theories and the relationship between MSDS models and Scherk-Schwarz reductions.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)002.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)002","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Non-supersymmetric heterotic strings share various properties with their supersymmetric counterparts. Torus compactifications of the latter live in a component of the moduli space of string vacua with 16 supercharges, and various asymmetric orbifolds thereof realize vacua in other components, exhibiting qualitative differences such as rank reduction. We set out to study the analogous problem for non-supersymmetric heterotic strings, framing it in relation to chiral fermionic CFTs with central charge 24, which were classified recently. We find that for the case analogous to the so-called CHL string, which has gauge group rank reduced by 8, there are in total four non-supersymmetric versions. These include the well known E8 string and three other constructions a la CHL, which can be distinguished qualitatively by how tachyons appear in their classical moduli spaces. We also discuss the classification problem for lower rank theories and the relationship between MSDS models and Scherk-Schwarz reductions.

非超对称异质弦和手性 CFT
非超对称异质弦与它们的超对称对应物具有各种特性。后者的环压缩存在于具有 16 个超电荷的弦空域模空间的一个分量中,而其中的各种非对称轨道折叠实现了其他分量中的空域,表现出秩降低等质的差异。我们着手研究非超对称异质弦的类似问题,并将其与最近分类的中心电荷为 24 的手性费米子 CFT 联系起来。我们发现,对于类似于所谓的CHL弦(其轨则群秩降低了8)的情况,总共有四个非超对称版本。其中包括众所周知的E8弦和其他三种类似于CHL的构造,它们可以通过超速子在其经典模空间中的出现方式进行定性区分。我们还讨论了低阶理论的分类问题,以及MSDS模型和薛克-施瓦茨还原之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信