A case study on the effect of contaminated inlet tubes on the accuracy of mid-cost optical particle counters for the ambient air monitoring of fine particles
Trieu-Vuong Dinh, Byeong-Gyu Park, Sang-Woo Lee, Da-Hyun Baek, In-Young Choi, Jo-Chun Kim
{"title":"A case study on the effect of contaminated inlet tubes on the accuracy of mid-cost optical particle counters for the ambient air monitoring of fine particles","authors":"Trieu-Vuong Dinh, Byeong-Gyu Park, Sang-Woo Lee, Da-Hyun Baek, In-Young Choi, Jo-Chun Kim","doi":"10.1007/s44273-024-00045-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of the long-term use of inlet-heated tubes on the performance of mid-cost optical particle counters (OPCs) for ambient air monitoring of fine particles (PM<sub>2.5</sub>). Two OPCs, equipped with inlet-heated tubes, were deployed over a 6-month period, with a beta attenuation monitor (BAM) serving as the reference device. The performance of the OPCs using the same inlet tubes for the first 3 months was compared to their performance after the frequent replacement of clean tubes during the final 3 months. The correlation coefficients (<i>r</i><sup>2</sup>) for the 1 h and 24 h average PM<sub>2.5</sub> concentrations between the OPCs and the BAM were lower with long-term contaminated tubes (0.82 < <i>r</i><sup>2</sup> < 0.93) compared to clean tubes (<i>r</i><sup>2</sup> > 0.93). The relative mean errors and biases significantly increased over time with contaminated tubes. Temperature, humidity, precipitation, and wind speed were found to have an insignificant effect (<i>r</i><sup>2</sup> < 0.1) on the performance of the two OPCs with inlet-heated tubes over the 6-month period. The relative average PM<sub>2.5</sub> error when using clean tubes was less than 4%. These findings highlight the importance of inlet-heated tubes in improving OPC performance, particularly for mitigating humidity effects.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":45358,"journal":{"name":"Asian Journal of Atmospheric Environment","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44273-024-00045-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Atmospheric Environment","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44273-024-00045-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the impact of the long-term use of inlet-heated tubes on the performance of mid-cost optical particle counters (OPCs) for ambient air monitoring of fine particles (PM2.5). Two OPCs, equipped with inlet-heated tubes, were deployed over a 6-month period, with a beta attenuation monitor (BAM) serving as the reference device. The performance of the OPCs using the same inlet tubes for the first 3 months was compared to their performance after the frequent replacement of clean tubes during the final 3 months. The correlation coefficients (r2) for the 1 h and 24 h average PM2.5 concentrations between the OPCs and the BAM were lower with long-term contaminated tubes (0.82 < r2 < 0.93) compared to clean tubes (r2 > 0.93). The relative mean errors and biases significantly increased over time with contaminated tubes. Temperature, humidity, precipitation, and wind speed were found to have an insignificant effect (r2 < 0.1) on the performance of the two OPCs with inlet-heated tubes over the 6-month period. The relative average PM2.5 error when using clean tubes was less than 4%. These findings highlight the importance of inlet-heated tubes in improving OPC performance, particularly for mitigating humidity effects.