One-dimensional Carrollian fluids. Part I. Carroll-Galilei duality

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Nikolaos Athanasiou, P. Marios Petropoulos, Simon M. Schulz, Grigalius Taujanskas
{"title":"One-dimensional Carrollian fluids. Part I. Carroll-Galilei duality","authors":"Nikolaos Athanasiou,&nbsp;P. Marios Petropoulos,&nbsp;Simon M. Schulz,&nbsp;Grigalius Taujanskas","doi":"10.1007/JHEP11(2024)012","DOIUrl":null,"url":null,"abstract":"<p>Galilean and Carrollian algebras acting on two-dimensional Newton-Cartan and Carrollian manifolds are isomorphic. A consequence of this property is a duality correspondence between one-dimensional Galilean and Carrollian fluids. We describe the dynamics of these systems as they emerge from the relevant limits of Lorentzian hydrodynamics, and explore the advertised duality relationship. This interchanges longitudinal and transverse directions with respect to the flow velocity, and permutes equilibrium and out-of-equilibrium observables, unveiling specific features of Carrollian physics. We investigate the action of local hydrodynamic-frame transformations in the Galilean and Carrollian configurations, i.e. dual Galilean and Carrollian local boosts, and comment on their potential breaking. Emphasis is laid on the additional geometric elements that are necessary to attain complete systems of hydrodynamic equations in Newton-Cartan and Carroll spacetimes. Our analysis is conducted in general Cartan frames as well as in more explicit coordinates, specifically suited to Galilean or Carrollian use.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2024 11","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP11(2024)012.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP11(2024)012","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Galilean and Carrollian algebras acting on two-dimensional Newton-Cartan and Carrollian manifolds are isomorphic. A consequence of this property is a duality correspondence between one-dimensional Galilean and Carrollian fluids. We describe the dynamics of these systems as they emerge from the relevant limits of Lorentzian hydrodynamics, and explore the advertised duality relationship. This interchanges longitudinal and transverse directions with respect to the flow velocity, and permutes equilibrium and out-of-equilibrium observables, unveiling specific features of Carrollian physics. We investigate the action of local hydrodynamic-frame transformations in the Galilean and Carrollian configurations, i.e. dual Galilean and Carrollian local boosts, and comment on their potential breaking. Emphasis is laid on the additional geometric elements that are necessary to attain complete systems of hydrodynamic equations in Newton-Cartan and Carroll spacetimes. Our analysis is conducted in general Cartan frames as well as in more explicit coordinates, specifically suited to Galilean or Carrollian use.

一维卡罗流体。第一部分。卡罗尔-伽利略对偶性
作用于二维牛顿-卡尔坦流形和卡罗尔流形的伽利略代数和卡罗尔代数是同构的。这一特性的结果是一维伽利略流体和卡罗尔流体之间的对偶对应关系。我们描述了这些系统从洛伦兹流体力学的相关极限中产生的动力学,并探讨了所宣传的对偶关系。这种关系改变了相对于流速的纵向和横向方向,并改变了平衡和非平衡观测值,揭示了卡罗尔物理学的具体特征。我们研究了伽利略构型和卡罗尔构型中局部流体力学框架变换的作用,即伽利略和卡罗尔的双重局部提升,并对其潜在的破缺进行了评论。重点是在牛顿-卡坦和卡罗尔时空中获得完整的流体力学方程组所必需的附加几何元素。我们的分析在一般卡坦框架以及更明确的坐标中进行,特别适合伽利略或卡罗尔使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信