Composite Textile with Electroconductive and Magnetic Properties

IF 1 4区 化学 Q4 POLYMER SCIENCE
I. Yu. Sapurina, M. A. Shishov, A. E. Shcherbakov, Yu. M. Spivak, A. A. Selutin
{"title":"Composite Textile with Electroconductive and Magnetic Properties","authors":"I. Yu. Sapurina,&nbsp;M. A. Shishov,&nbsp;A. E. Shcherbakov,&nbsp;Yu. M. Spivak,&nbsp;A. A. Selutin","doi":"10.1134/S1560090424601055","DOIUrl":null,"url":null,"abstract":"<p>Electrically conductive composite textile and textile combining electrically conductive and magnetic properties have been obtained on the basis of biocompatible non-toxic materials: commercial non-woven textiles, electrically conductive polypyrrole and magnetite (Fe<sub>3</sub>O<sub>4</sub>). The composite textile has been formed from two-layer fibers, where the fibers of the original textile are coated with a polypyrrole shell, and the textile combining electrically conductive and magnetic properties have had a three-layer structure, where magnetite particles are deposited on top of the polypyrrole shell. The composite textiles have retained the structure of the original fabric with free interfiber space: the specific surface area of the materials and their mechanical properties have been similar in value. The composition of materials, their electrically conductive, magnetic, and redox properties have been investigated. The interaction of the composite textile and the textile combining electrically conductive and magnetic properties with electromagnetic radiation in the frequency range of 4–8 GHz have been investigated in comparison with a commercial radio-absorbing material based on carbonyl iron.</p>","PeriodicalId":739,"journal":{"name":"Polymer Science, Series B","volume":"66 3","pages":"414 - 428"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series B","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1560090424601055","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Electrically conductive composite textile and textile combining electrically conductive and magnetic properties have been obtained on the basis of biocompatible non-toxic materials: commercial non-woven textiles, electrically conductive polypyrrole and magnetite (Fe3O4). The composite textile has been formed from two-layer fibers, where the fibers of the original textile are coated with a polypyrrole shell, and the textile combining electrically conductive and magnetic properties have had a three-layer structure, where magnetite particles are deposited on top of the polypyrrole shell. The composite textiles have retained the structure of the original fabric with free interfiber space: the specific surface area of the materials and their mechanical properties have been similar in value. The composition of materials, their electrically conductive, magnetic, and redox properties have been investigated. The interaction of the composite textile and the textile combining electrically conductive and magnetic properties with electromagnetic radiation in the frequency range of 4–8 GHz have been investigated in comparison with a commercial radio-absorbing material based on carbonyl iron.

Abstract Image

具有导电和磁性能的复合纺织品
在生物相容性无毒材料:商用无纺布、导电聚吡咯和磁铁矿(Fe3O4)的基础上,获得了导电复合纺织品和导电与磁性相结合的纺织品。复合纺织品由两层纤维构成,即在原始纺织品的纤维上涂覆一层聚吡咯外壳,而兼具导电性和磁性的纺织品则具有三层结构,即在聚吡咯外壳上沉积磁铁矿颗粒。复合纺织品保留了原始织物的结构,具有自由的纤维间空间:材料的比表面积和机械性能值相似。对材料的组成、导电性、磁性和氧化还原性进行了研究。与基于羰基铁的商用无线电吸收材料相比,研究了复合纺织品和兼具导电和磁性能的纺织品与 4-8 千兆赫频率范围内电磁辐射的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Science, Series B
Polymer Science, Series B 化学-高分子科学
CiteScore
1.80
自引率
8.30%
发文量
58
审稿时长
>0 weeks
期刊介绍: Polymer Science, Series B is a journal published in collaboration with the Russian Academy of Sciences. Series B experimental and theoretical papers and reviews dealing with the synthesis, kinetics, catalysis, and chemical transformations of macromolecules, supramolecular structures, and polymer matrix-based composites (6 issues a year). All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信