Traveling Fronts for a Time-periodic Population Model with Dispersal

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Hai-qin Zhao
{"title":"Traveling Fronts for a Time-periodic Population Model with Dispersal","authors":"Hai-qin Zhao","doi":"10.1007/s10255-024-1052-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we study a class of time-periodic population model with dispersal. It is well known that the existence of the periodic traveling fronts has been established. However, the uniqueness and stability of such fronts remain unsolved. In this paper, we first prove the uniqueness of non-critical periodic traveling fronts. Then, we show that all non-critical periodic traveling fronts are exponentially asymptotically stable.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 4","pages":"1147 - 1154"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1052-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study a class of time-periodic population model with dispersal. It is well known that the existence of the periodic traveling fronts has been established. However, the uniqueness and stability of such fronts remain unsolved. In this paper, we first prove the uniqueness of non-critical periodic traveling fronts. Then, we show that all non-critical periodic traveling fronts are exponentially asymptotically stable.

有散布的时周期种群模型的移动前沿
本文研究的是一类具有分散性的时间周期性种群模型。众所周知,周期性旅行前沿的存在已被证实。然而,这类前沿的唯一性和稳定性问题仍未解决。在本文中,我们首先证明了非临界周期性行进前沿的唯一性。然后,我们证明了所有非临界周期性行进前沿都是指数渐近稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信