Chaotic Motions of the van der Pol-Duffing Oscillator Subjected to Periodic External and Parametric Excitations with Delayed Feedbacks

Pub Date : 2024-11-06 DOI:10.1007/s10255-024-1038-2
Liang-qiang Zhou, Fang-qi Chen
{"title":"Chaotic Motions of the van der Pol-Duffing Oscillator Subjected to Periodic External and Parametric Excitations with Delayed Feedbacks","authors":"Liang-qiang Zhou,&nbsp;Fang-qi Chen","doi":"10.1007/s10255-024-1038-2","DOIUrl":null,"url":null,"abstract":"<div><p>Chaotic dynamics of the van der Pol-Duffing oscillator subjected to periodic external and parametric excitations with delayed feedbacks are investigated both analytically and numerically in this manuscript. With the Melnikov method, the critical value of chaos arising from homoclinic or heteroclinic intersections is derived analytically. The feature of the critical curves separating chaotic and non-chaotic regions on the excitation frequency and the time delay is investigated analytically in detail. The monotonicity of the critical value to the excitation frequency and time delay is obtained rigorously. It is presented that there may exist a special frequency for this system. With this frequency, chaos in the sense of Melnikov may not occur for any excitation amplitudes. There also exists a uncontrollable time delay with which chaos always occurs for this system. Numerical simulations are carried out to verify the chaos threshold obtained by the analytical method.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1038-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Chaotic dynamics of the van der Pol-Duffing oscillator subjected to periodic external and parametric excitations with delayed feedbacks are investigated both analytically and numerically in this manuscript. With the Melnikov method, the critical value of chaos arising from homoclinic or heteroclinic intersections is derived analytically. The feature of the critical curves separating chaotic and non-chaotic regions on the excitation frequency and the time delay is investigated analytically in detail. The monotonicity of the critical value to the excitation frequency and time delay is obtained rigorously. It is presented that there may exist a special frequency for this system. With this frequency, chaos in the sense of Melnikov may not occur for any excitation amplitudes. There also exists a uncontrollable time delay with which chaos always occurs for this system. Numerical simulations are carried out to verify the chaos threshold obtained by the analytical method.

分享
查看原文
范德尔波尔-杜芬振荡器在周期性外部和参数激励下的混沌运动与延迟反馈
本手稿以分析和数值方法研究了范德尔波尔-杜芬振荡器在周期性外部和参数激励下的延迟反馈混沌动力学。通过梅尔尼科夫方法,分析得出了同线性或异线性交叉产生的混沌临界值。详细分析了混沌和非混沌区域临界曲线在激励频率和时间延迟上的特征。严格得出了临界值与激励频率和时间延迟的单调性。研究表明,该系统可能存在一个特殊频率。在该频率下,任何激励振幅都不会出现梅尔尼科夫意义上的混沌。该系统还存在一个不可控制的时间延迟,在该时间延迟下,混沌总是会发生。为了验证分析方法得出的混沌阈值,我们进行了数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信