{"title":"Conflict-free Incidence Coloring of Outer-1-planar Graphs","authors":"Meng-ke Qi, Xin Zhang","doi":"10.1007/s10255-024-1033-7","DOIUrl":null,"url":null,"abstract":"<div><p>An incidence of a graph <i>G</i> is a vertex-edge pair (<i>v, e</i>) such that <i>v</i> is incidence with <i>e</i>. A conflict-free incidence coloring of a graph is a coloring of the incidences in such a way that two incidences (<i>u, e</i>) and (<i>v, f</i>) get distinct colors if and only if they conflict each other, i.e., (i) <i>u = v</i>, (ii) <i>uv</i> is <i>e</i> or <i>f</i>, or (iii) there is a vertex <i>w</i> such that <i>uw</i> = <i>e</i> and <i>vw</i> = <i>f</i>. The minimum number of colors used among all conflict-free incidence colorings of a graph is the conflict-free incidence chromatic number. A graph is outer-1-planar if it can be drawn in the plane so that vertices are on the outer-boundary and each edge is crossed at most once. In this paper, we show that the conflict-free incidence chromatic number of an outer-1-planar graph with maximum degree Δ is either 2Δ or 2Δ + 1 unless the graph is a cycle on three vertices, and moreover, all outer-1-planar graphs with conflict-free incidence chromatic number 2Δ or 2Δ + 1 are completely characterized. An efficient algorithm for constructing an optimal conflict-free incidence coloring of a connected outer-1-planar graph is given.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1033-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An incidence of a graph G is a vertex-edge pair (v, e) such that v is incidence with e. A conflict-free incidence coloring of a graph is a coloring of the incidences in such a way that two incidences (u, e) and (v, f) get distinct colors if and only if they conflict each other, i.e., (i) u = v, (ii) uv is e or f, or (iii) there is a vertex w such that uw = e and vw = f. The minimum number of colors used among all conflict-free incidence colorings of a graph is the conflict-free incidence chromatic number. A graph is outer-1-planar if it can be drawn in the plane so that vertices are on the outer-boundary and each edge is crossed at most once. In this paper, we show that the conflict-free incidence chromatic number of an outer-1-planar graph with maximum degree Δ is either 2Δ or 2Δ + 1 unless the graph is a cycle on three vertices, and moreover, all outer-1-planar graphs with conflict-free incidence chromatic number 2Δ or 2Δ + 1 are completely characterized. An efficient algorithm for constructing an optimal conflict-free incidence coloring of a connected outer-1-planar graph is given.