Yaping Deng, Zhiqiang Qiao, Nana Li, Jing Zhang, Yue Hu, Deqiang Ji, Debin Ji, Zhida Li and Hongjun Wu
{"title":"Molten salt electrolysis: promising technology to capture and transform CO2 into valuable carbon materials","authors":"Yaping Deng, Zhiqiang Qiao, Nana Li, Jing Zhang, Yue Hu, Deqiang Ji, Debin Ji, Zhida Li and Hongjun Wu","doi":"10.1039/D4SE00819G","DOIUrl":null,"url":null,"abstract":"<p >The escalating concentration of atmospheric CO<small><sub>2</sub></small>, now exceeding 423.68 ppm and representing a 50% increase since pre-industrial times, underscores an urgent imperative to curb emissions. Scientists worldwide are actively investigating eco-friendly pathways to convert CO<small><sub>2</sub></small> into valuable carbon-based materials. Recently, the application of molten salts in CO<small><sub>2</sub></small> electro-conversion has garnered significant attention. In this overview, we meticulously detail the advancements in molten salt electrolysis technology for CO<small><sub>2</sub></small> capture and electro-transformation over the past decade. The mechanisms of CO<small><sub>2</sub></small> capture and conversion in molten salt are elucidated. Additionally, a detailed analysis of synthesis parameters for various carbon materials, including carbon nanotubes (CNTs), spherical carbon, graphene, and doped carbon is conducted. The applications of some carbon materials in clean energy storage and conversion are also expanded. Furthermore, the methods for the separation and purification of carbon products from molten salt are incorporated. Finally, we delve into the prospects and challenges of molten salt electrochemistry for CO<small><sub>2</sub></small> transformation, underlining its potential to drive a sustainable and environmentally friendly future.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 22","pages":" 5147-5164"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se00819g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating concentration of atmospheric CO2, now exceeding 423.68 ppm and representing a 50% increase since pre-industrial times, underscores an urgent imperative to curb emissions. Scientists worldwide are actively investigating eco-friendly pathways to convert CO2 into valuable carbon-based materials. Recently, the application of molten salts in CO2 electro-conversion has garnered significant attention. In this overview, we meticulously detail the advancements in molten salt electrolysis technology for CO2 capture and electro-transformation over the past decade. The mechanisms of CO2 capture and conversion in molten salt are elucidated. Additionally, a detailed analysis of synthesis parameters for various carbon materials, including carbon nanotubes (CNTs), spherical carbon, graphene, and doped carbon is conducted. The applications of some carbon materials in clean energy storage and conversion are also expanded. Furthermore, the methods for the separation and purification of carbon products from molten salt are incorporated. Finally, we delve into the prospects and challenges of molten salt electrochemistry for CO2 transformation, underlining its potential to drive a sustainable and environmentally friendly future.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.