Exploring hybrid seawater electrolysis with anodic oxidation reactions (AORs): recent progress and prospects

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Baghendra Singh, Ayusie Goyal, Shalini Verma, Labham Singh and Apparao Draksharapu
{"title":"Exploring hybrid seawater electrolysis with anodic oxidation reactions (AORs): recent progress and prospects","authors":"Baghendra Singh, Ayusie Goyal, Shalini Verma, Labham Singh and Apparao Draksharapu","doi":"10.1039/D4SE01191K","DOIUrl":null,"url":null,"abstract":"<p >The major obstacle in electrocatalytic seawater splitting (ESS) is the electro-oxidation of dissolved ions at the anode, which causes significant electrode corrosion and competes with the oxygen evolution reaction (OER), ultimately lowering efficiency. Although various electrocatalysts have been employed, achieving high current densities for seawater splitting without triggering side reactions remains a challenging task. Therefore, researchers have substituted oxygen evolution reaction (OER) in seawater electrolysis with various anodic oxidation reactions (AORs) including organic/inorganic compounds. This development of a hybrid seawater electrolysis system enhances hydrogen production at the cathode and generates high-value products at the anode. This approach is crucial in preventing side reactions like chloride oxidation reaction (ClOR), OER, and catalyst corrosion. In recent years, this technique has been extensively explored by researchers to address the challenges of seawater electrolysis and improve its efficiency. A series of electrocatalysts have been investigated for hybrid seawater electrolysis. Despite significant progress in this emerging area, there is no dedicated review available in the literature for hybrid seawater electrolysis. This review aims to fill this gap by focusing systematically on the recent progress and development of electrocatalysts specifically designed for hybrid seawater electrolysis. This review explores the structure–property–performance relationships of electrocatalysts, supported by pioneering examples. The impact of structure, morphology, and electronic properties of the catalysts on hybrid seawater electrolysis performance has been described in detail. Additionally, we discuss future advancements and challenges associated with the ongoing research into hybrid seawater electrolysis.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 22","pages":" 5131-5146"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01191k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The major obstacle in electrocatalytic seawater splitting (ESS) is the electro-oxidation of dissolved ions at the anode, which causes significant electrode corrosion and competes with the oxygen evolution reaction (OER), ultimately lowering efficiency. Although various electrocatalysts have been employed, achieving high current densities for seawater splitting without triggering side reactions remains a challenging task. Therefore, researchers have substituted oxygen evolution reaction (OER) in seawater electrolysis with various anodic oxidation reactions (AORs) including organic/inorganic compounds. This development of a hybrid seawater electrolysis system enhances hydrogen production at the cathode and generates high-value products at the anode. This approach is crucial in preventing side reactions like chloride oxidation reaction (ClOR), OER, and catalyst corrosion. In recent years, this technique has been extensively explored by researchers to address the challenges of seawater electrolysis and improve its efficiency. A series of electrocatalysts have been investigated for hybrid seawater electrolysis. Despite significant progress in this emerging area, there is no dedicated review available in the literature for hybrid seawater electrolysis. This review aims to fill this gap by focusing systematically on the recent progress and development of electrocatalysts specifically designed for hybrid seawater electrolysis. This review explores the structure–property–performance relationships of electrocatalysts, supported by pioneering examples. The impact of structure, morphology, and electronic properties of the catalysts on hybrid seawater electrolysis performance has been described in detail. Additionally, we discuss future advancements and challenges associated with the ongoing research into hybrid seawater electrolysis.

Abstract Image

探索阳极氧化反应(AORs)混合海水电解:最新进展与前景
电催化海水分馏(ESS)的主要障碍是阳极溶解离子的电氧化,这会造成严重的电极腐蚀,并与氧进化反应(OER)竞争,最终降低效率。虽然已经采用了各种电催化剂,但要在不引发副反应的情况下实现海水分馏的高电流密度仍是一项具有挑战性的任务。因此,研究人员用各种阳极氧化反应(AOR)(包括有机/无机化合物)取代了海水电解中的氧进化反应(OER)。这种混合海水电解系统的开发提高了阴极的氢气产量,并在阳极产生了高价值的产品。这种方法对于防止氯氧化反应(ClOR)、OER 和催化剂腐蚀等副反应至关重要。近年来,研究人员对这一技术进行了广泛探索,以应对海水电解所面临的挑战并提高其效率。针对混合海水电解研究了一系列电催化剂。尽管这一新兴领域取得了重大进展,但目前还没有关于混合海水电解的专门文献综述。本综述旨在通过系统地关注专为混合海水电解设计的电催化剂的最新进展和发展,填补这一空白。本综述探讨了电催化剂的结构-性能关系,并辅以先驱实例。详细介绍了催化剂的结构、形态和电子特性对混合海水电解性能的影响。此外,我们还讨论了与正在进行的混合海水电解研究相关的未来进展和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信