Deep Learning-Based Fast Volumetric Image Generation for Image-Guided Proton Radiotherapy

IF 4.6 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Chih-Wei Chang;Yang Lei;Tonghe Wang;Sibo Tian;Justin Roper;Liyong Lin;Jeffrey Bradley;Tian Liu;Jun Zhou;Xiaofeng Yang
{"title":"Deep Learning-Based Fast Volumetric Image Generation for Image-Guided Proton Radiotherapy","authors":"Chih-Wei Chang;Yang Lei;Tonghe Wang;Sibo Tian;Justin Roper;Liyong Lin;Jeffrey Bradley;Tian Liu;Jun Zhou;Xiaofeng Yang","doi":"10.1109/TRPMS.2024.3439585","DOIUrl":null,"url":null,"abstract":"Very fast imaging techniques can enhance the precision of image-guided radiation therapy, which can be useful for external beam radiation therapy. This work aims to develop a deep learning (DL)-based image-guide framework to enable fast volumetric image reconstruction for accurate target localization for treating lung cancer patients with gating, and it is presented in the context of FLASH which leverages ultrahigh dose-rate radiation to enhance the sparing of organs at risk without compromising tumor control probability. The proposed framework comprises four modules, including orthogonal kV X-ray projection acquisition, DL-based volumetric image generation, image quality analyses, and proton water equivalent thickness (WET) evaluation. We investigated volumetric image reconstruction using kV projection pairs with four different source angles. Thirty patients with lung targets were identified from an institutional database, each patient having a 4-D computed tomography (CT) dataset with ten respiratory phases. Considering all evaluation metrics, the kV projections with source angles of 135° and 225° yielded the optimal volumetric images. The patient-averaged mean absolute error, peak signal-to-noise ratio, structural similarity index measure, and WET error were \n<inline-formula> <tex-math>$75\\pm 22$ </tex-math></inline-formula>\n hounsfield unit, \n<inline-formula> <tex-math>$19\\pm 3$ </tex-math></inline-formula>\n.7 dB, \n<inline-formula> <tex-math>$0.938\\pm 0.044$ </tex-math></inline-formula>\n, and −1.3%±4.1%. The proposed framework can rapidly deliver volumetric images to potentially guide proton FLASH treatment delivery systems.","PeriodicalId":46807,"journal":{"name":"IEEE Transactions on Radiation and Plasma Medical Sciences","volume":"8 8","pages":"973-983"},"PeriodicalIF":4.6000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radiation and Plasma Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10623771/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Very fast imaging techniques can enhance the precision of image-guided radiation therapy, which can be useful for external beam radiation therapy. This work aims to develop a deep learning (DL)-based image-guide framework to enable fast volumetric image reconstruction for accurate target localization for treating lung cancer patients with gating, and it is presented in the context of FLASH which leverages ultrahigh dose-rate radiation to enhance the sparing of organs at risk without compromising tumor control probability. The proposed framework comprises four modules, including orthogonal kV X-ray projection acquisition, DL-based volumetric image generation, image quality analyses, and proton water equivalent thickness (WET) evaluation. We investigated volumetric image reconstruction using kV projection pairs with four different source angles. Thirty patients with lung targets were identified from an institutional database, each patient having a 4-D computed tomography (CT) dataset with ten respiratory phases. Considering all evaluation metrics, the kV projections with source angles of 135° and 225° yielded the optimal volumetric images. The patient-averaged mean absolute error, peak signal-to-noise ratio, structural similarity index measure, and WET error were $75\pm 22$ hounsfield unit, $19\pm 3$ .7 dB, $0.938\pm 0.044$ , and −1.3%±4.1%. The proposed framework can rapidly deliver volumetric images to potentially guide proton FLASH treatment delivery systems.
基于深度学习的图像引导质子放疗快速容积图像生成技术
快速成像技术可以提高图像引导放射治疗的精确度,这对体外放射治疗非常有用。这项工作旨在开发一种基于深度学习(DL)的图像引导框架,以实现快速容积图像重建,从而为肺癌患者的门控治疗提供精确的靶点定位,该框架是在FLASH的背景下提出的,FLASH利用超高剂量率辐射,在不影响肿瘤控制概率的情况下加强了对危险器官的保护。拟议的框架由四个模块组成,包括正交 kV X 射线投影采集、基于 DL 的容积图像生成、图像质量分析和质子水当量厚度(WET)评估。我们研究了使用四种不同射线源角度的 kV 投影对进行容积图像重建的情况。我们从机构数据库中确定了 30 位肺部靶点患者,每位患者都有一个包含 10 个呼吸相位的 4-D 计算机断层扫描 (CT) 数据集。考虑到所有评价指标,135°和 225°源角的 kV 投影产生了最佳容积图像。患者平均绝对误差、峰值信噪比、结构相似性指数和WET误差分别为75/pm 22$ hounsfield unit、19/pm 3$ .7 dB、0.938/pm 0.044$和-1.3%±4.1%。所提出的框架可以快速提供容积图像,为质子FLASH治疗输送系统提供潜在指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Radiation and Plasma Medical Sciences
IEEE Transactions on Radiation and Plasma Medical Sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
8.00
自引率
18.20%
发文量
109
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信