2-D Thin-Shell Model Based on the $H$-$\phi$-Formulation for Modeling HTS Tapes in COMSOL Multiphysics

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Bruno de Sousa Alves;Alexandre Arsenault;Frédéric Sirois
{"title":"2-D Thin-Shell Model Based on the $H$-$\\phi$-Formulation for Modeling HTS Tapes in COMSOL Multiphysics","authors":"Bruno de Sousa Alves;Alexandre Arsenault;Frédéric Sirois","doi":"10.1109/TASC.2024.3473850","DOIUrl":null,"url":null,"abstract":"This article presents a finite-element thin-shell (TS) model and its application to 2-D electromagnetic problems involving superconducting tapes in COMSOL Multiphysics. The magnetic scalar potential (\n<inline-formula><tex-math>$\\phi$</tex-math></inline-formula>\n) is the state variable in nonconducting regions surrounding of the tapes, which are represented as zero thickness objects in the calculus domain. Inside the tapes, an auxiliary 1-D problem formulated in terms of the tangential components of the magnetic field (\n<inline-formula><tex-math>$H$</tex-math></inline-formula>\n) takes into account the physics across their thickness. The final finite-element system of equations includes both the 2-D and 1-D discretized equations, which are solved simultaneously in a fully coupled manner and transparently for the user. The use of thin cuts is required to impose transport currents in the tapes. This procedure allows the simulation of problems comprising superconducting tapes in any geometrical configuration. We demonstrate that both the normal and tangential fields agree well with reference solutions obtained with the widely used \n<inline-formula><tex-math>$T$</tex-math></inline-formula>\n-\n<inline-formula><tex-math>$A$</tex-math></inline-formula>\n-formulation and with the more standard \n<inline-formula><tex-math>$H$</tex-math></inline-formula>\n- and \n<inline-formula><tex-math>$H$</tex-math></inline-formula>\n-\n<inline-formula><tex-math>$\\phi$</tex-math></inline-formula>\n-formulations with a full 2-D discretization of the tapes. The proposed \n<inline-formula><tex-math>$H$</tex-math></inline-formula>\n-\n<inline-formula><tex-math>$\\phi$</tex-math></inline-formula>\n TS model estimates ac losses accurately while speeding up simulations. This makes this model ideal for simulating large-scale superconducting devices in 2-D, particularly when they comprise compact arrangements of high-temperature superconductor tapes carrying antiparallel currents.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"34 9","pages":"1-10"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10704970/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a finite-element thin-shell (TS) model and its application to 2-D electromagnetic problems involving superconducting tapes in COMSOL Multiphysics. The magnetic scalar potential ( $\phi$ ) is the state variable in nonconducting regions surrounding of the tapes, which are represented as zero thickness objects in the calculus domain. Inside the tapes, an auxiliary 1-D problem formulated in terms of the tangential components of the magnetic field ( $H$ ) takes into account the physics across their thickness. The final finite-element system of equations includes both the 2-D and 1-D discretized equations, which are solved simultaneously in a fully coupled manner and transparently for the user. The use of thin cuts is required to impose transport currents in the tapes. This procedure allows the simulation of problems comprising superconducting tapes in any geometrical configuration. We demonstrate that both the normal and tangential fields agree well with reference solutions obtained with the widely used $T$ - $A$ -formulation and with the more standard $H$ - and $H$ - $\phi$ -formulations with a full 2-D discretization of the tapes. The proposed $H$ - $\phi$ TS model estimates ac losses accurately while speeding up simulations. This makes this model ideal for simulating large-scale superconducting devices in 2-D, particularly when they comprise compact arrangements of high-temperature superconductor tapes carrying antiparallel currents.
基于 $H$-$\phi$ 公式的二维薄壳模型,用于在 COMSOL Multiphysics 中模拟 HTS 磁带
本文介绍了一种有限元薄壳(TS)模型及其在 COMSOL Multiphysics 中对涉及超导磁带的二维电磁问题的应用。磁标量势($\phi$)是磁带周围非导电区域的状态变量,在微积分域中表示为零厚度对象。在磁带内部,一个以磁场切向分量($H$)表示的辅助一维问题考虑了整个磁带厚度的物理特性。最终的有限元方程系统包括二维和一维离散方程,它们以完全耦合的方式同时求解,对用户而言是透明的。需要使用薄切割在磁带中施加传输流。这一程序允许模拟由任何几何构造的超导带组成的问题。我们证明,法向场和切向场都与广泛使用的 $T$-$A$ 公式以及更标准的 $H$- 和 $H$-$\phi$ 公式(对磁带进行全二维离散化)获得的参考解十分吻合。所提出的 $H$-$\phi$ TS 模型能准确估计交流损耗,同时加快模拟速度。这使得该模型成为二维模拟大规模超导设备的理想选择,特别是当这些设备由携带反平行电流的高温超导体磁带紧凑排列组成时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信