{"title":"Design and Investigation of a New Torque-Enhanced Flux Modulated Permanent Magnet Arc Motor With Flux-Concentrated Stator PMs","authors":"Nan Chen;Shuhua Fang","doi":"10.1109/TASC.2024.3484333","DOIUrl":null,"url":null,"abstract":"This article proposes an innovative flux modulated permanent magnet (PM) arc motor enhanced with flux-concentrated stator PMs (FCS-FMPMAM). With the primary goal of increasing the average torque output, the FCS-FMPMAM incorporates a set of flux-focused stator PMs. This article initially introduces the configuration and performance of the FCS-FMPMAM. The combination of the flux-switching PMs, consequent-pole PMs and PMs in the stator yoke is beneficial to generate abundant harmonics and bolster the triple flux-modulation effect. Then, the optimal rotor pole number of the proposed machine is analyzed and selected. The sensitivity analysis is performed on the design parameters of FCS-FMPMAM for the consequent optimization of the torque performance of FCS-FMPMAM. This facilitates the subsequent torque performance optimization of FSC-FMPMAM. Based on the multi-objective evolutionary algorithm, the torque capabilities of FCS-FMPMAM are optimized to obtain the maximized average torque output and the minimized torque ripple. The optimized machine is analyzed under different PM excitation conditions to reveal the superiority of the proposed PM arrangement. Finally, the proposed machine is compared with an existing flux-modulated stator-PM arc motor in electromagnetic performances with finite element analysis method to exhibit the superiority of FCS-FMPMAM.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10723751/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This article proposes an innovative flux modulated permanent magnet (PM) arc motor enhanced with flux-concentrated stator PMs (FCS-FMPMAM). With the primary goal of increasing the average torque output, the FCS-FMPMAM incorporates a set of flux-focused stator PMs. This article initially introduces the configuration and performance of the FCS-FMPMAM. The combination of the flux-switching PMs, consequent-pole PMs and PMs in the stator yoke is beneficial to generate abundant harmonics and bolster the triple flux-modulation effect. Then, the optimal rotor pole number of the proposed machine is analyzed and selected. The sensitivity analysis is performed on the design parameters of FCS-FMPMAM for the consequent optimization of the torque performance of FCS-FMPMAM. This facilitates the subsequent torque performance optimization of FSC-FMPMAM. Based on the multi-objective evolutionary algorithm, the torque capabilities of FCS-FMPMAM are optimized to obtain the maximized average torque output and the minimized torque ripple. The optimized machine is analyzed under different PM excitation conditions to reveal the superiority of the proposed PM arrangement. Finally, the proposed machine is compared with an existing flux-modulated stator-PM arc motor in electromagnetic performances with finite element analysis method to exhibit the superiority of FCS-FMPMAM.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.