Murat Yanat, Esther Voortman, Carla Buijsse, Karin Schroën
{"title":"Life cycle assessment (LCA) of chitin nanocrystal reinforced polylactic acid (ChNC/PLA) and polyethylene terephthalate (PET) packaging material","authors":"Murat Yanat, Esther Voortman, Carla Buijsse, Karin Schroën","doi":"10.1016/j.carbpol.2024.122927","DOIUrl":null,"url":null,"abstract":"<div><div>Bio-nanocomposites hold the promise to reduce environmental impact of plastic materials and lessen reliance on non-renewable resources as is the case for fossil-based plastics. In this study, we present chitin nanocrystal (ChNC) reinforced polylactic acid (PLA) as biodegradable polymer with natural-origin nanoparticles, enhancing the base polymer's strength. Until now, these bio-nanocomposites have been evaluated from fundamental and practical perspectives, yet, in-depth research on their environmental impact remains limited. We conducted a life cycle assessment (LCA) for upscaled ChNC production including its incorporation into PLA. We compare with the benchmark polyethylene terephthalate (PET) using ten impact indicators, primarily focusing on climate change. For PLA, PET, and ChNC/PLA (5 % particles), the production processes resulted in 3.04, 3.21, and 4.26 kg CO<sub>2</sub> equivalent, respectively. Recycling processes greatly enhance plastics sustainability, though practical implementation remains challenging. On that aspect, compostable PLA and ChNC/PLA materials outperform conventional plastics that end up in landfill. The climate change impact of ChNC production can be reduced by 30 to 40 % by decreasing HCl and water use during acid hydrolysis and energy used during drying compared to current laboratory conditions. These insights incorporated into ChNC/PLA production and post-use strategies can guide bio-nanocomposite production toward more sustainable practices.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"348 ","pages":"Article 122927"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724011536","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-nanocomposites hold the promise to reduce environmental impact of plastic materials and lessen reliance on non-renewable resources as is the case for fossil-based plastics. In this study, we present chitin nanocrystal (ChNC) reinforced polylactic acid (PLA) as biodegradable polymer with natural-origin nanoparticles, enhancing the base polymer's strength. Until now, these bio-nanocomposites have been evaluated from fundamental and practical perspectives, yet, in-depth research on their environmental impact remains limited. We conducted a life cycle assessment (LCA) for upscaled ChNC production including its incorporation into PLA. We compare with the benchmark polyethylene terephthalate (PET) using ten impact indicators, primarily focusing on climate change. For PLA, PET, and ChNC/PLA (5 % particles), the production processes resulted in 3.04, 3.21, and 4.26 kg CO2 equivalent, respectively. Recycling processes greatly enhance plastics sustainability, though practical implementation remains challenging. On that aspect, compostable PLA and ChNC/PLA materials outperform conventional plastics that end up in landfill. The climate change impact of ChNC production can be reduced by 30 to 40 % by decreasing HCl and water use during acid hydrolysis and energy used during drying compared to current laboratory conditions. These insights incorporated into ChNC/PLA production and post-use strategies can guide bio-nanocomposite production toward more sustainable practices.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.