Liouville-type theorems for partial trace equations with nonlinear gradient terms

IF 1.2 3区 数学 Q1 MATHEMATICS
Bukayaw Kindu , Ahmed Mohammed , Birilew Tsegaw
{"title":"Liouville-type theorems for partial trace equations with nonlinear gradient terms","authors":"Bukayaw Kindu ,&nbsp;Ahmed Mohammed ,&nbsp;Birilew Tsegaw","doi":"10.1016/j.jmaa.2024.129010","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we will study various Liouville-type theorems for partial trace equations with nonlinear gradient terms. Specifically, we will provide sufficient conditions for non-negative viscosity subsolutions of these equations in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> to vanish identically. For a prototype of such equations, we will give necessary and sufficient conditions for non-negative subsolutions in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> to be identically zero.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129010"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009326","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we will study various Liouville-type theorems for partial trace equations with nonlinear gradient terms. Specifically, we will provide sufficient conditions for non-negative viscosity subsolutions of these equations in Rn to vanish identically. For a prototype of such equations, we will give necessary and sufficient conditions for non-negative subsolutions in Rn to be identically zero.
具有非线性梯度项的偏微分方程的柳维尔型定理
本文将研究具有非线性梯度项的偏微分方程的各种 Liouville 型定理。具体来说,我们将为这些方程在 Rn 中的非负粘性子解提供同值消失的充分条件。对于此类方程的一个原型,我们将给出 Rn 中非负值子解同值为零的必要和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信