{"title":"An unsupervised group detection method for understanding group dynamics in crowds","authors":"","doi":"10.1016/j.physa.2024.130195","DOIUrl":null,"url":null,"abstract":"<div><div>Pedestrian groups arrive in large numbers in crowd gatherings, especially of a spiritual nature. Various studies have been done on crowd control in public spaces by analysing the behaviour of pedestrian groups. Understanding group dynamics can help better plan pedestrian facilities and large events. Many existing group sensing models primarily determine social bonding between pedestrians using spatiotemporal parameters, such as distance, directional movement, and overlapping time. However, social bonding determined based on these parameters assumes the bonding to be symmetric, spatially and temporally static and is unaffected by neighbourhood. Our study addresses the issue by relaxing such assumptions and developing an unsupervised group detection model based on potential candidates. The proposed model can handle temporal and spatial variations more effectively than those based on simple spatiotemporal parameters. The model developed is assessed both quantitatively and qualitatively. New metrics are introduced for quantitative evaluation, comparing predicted groups and ground truth instead of pedestrian pairs with ground truth. A visualisation method is developed for the qualitative assessment. Group splits and group merges are calculated to assist in understanding crowd movement patterns. Overall, this study helps in further exploring and assessing groups, which can improve understanding of crowd dynamics.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124007040","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Pedestrian groups arrive in large numbers in crowd gatherings, especially of a spiritual nature. Various studies have been done on crowd control in public spaces by analysing the behaviour of pedestrian groups. Understanding group dynamics can help better plan pedestrian facilities and large events. Many existing group sensing models primarily determine social bonding between pedestrians using spatiotemporal parameters, such as distance, directional movement, and overlapping time. However, social bonding determined based on these parameters assumes the bonding to be symmetric, spatially and temporally static and is unaffected by neighbourhood. Our study addresses the issue by relaxing such assumptions and developing an unsupervised group detection model based on potential candidates. The proposed model can handle temporal and spatial variations more effectively than those based on simple spatiotemporal parameters. The model developed is assessed both quantitatively and qualitatively. New metrics are introduced for quantitative evaluation, comparing predicted groups and ground truth instead of pedestrian pairs with ground truth. A visualisation method is developed for the qualitative assessment. Group splits and group merges are calculated to assist in understanding crowd movement patterns. Overall, this study helps in further exploring and assessing groups, which can improve understanding of crowd dynamics.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.