YinPing Wu , JiaSheng Ke , Junhua Chen , Bo Zhang , He Zhang , Jiayun Zhong , Yunlong Zhang , Hong Huang , Xiang Li , Yue Situ
{"title":"Bis-acrylate functionalized enone as photoinitiators for UV-LED photopolymerization","authors":"YinPing Wu , JiaSheng Ke , Junhua Chen , Bo Zhang , He Zhang , Jiayun Zhong , Yunlong Zhang , Hong Huang , Xiang Li , Yue Situ","doi":"10.1016/j.eurpolymj.2024.113506","DOIUrl":null,"url":null,"abstract":"<div><div>Ketene derivatives have been widely studied in photopolymerization technology system because of their advantages of excellent light absorption and strong photobleaching ability. Nevertheless, the field of research into photoinitiators derived from ketene that exhibit minimal migration and superior solubility is relatively underexplored. In this study, five new polymerizable ketene derivative photoinitiators (CPBA-1 to 5) were designed and synthesized for photoinitiated radical polymerization (FRP). The photoinitiation performance, migration after curing, and solubility of CPBA1-3 in trimethylpropane triacrylate (TMPTA) free radical polymerization (FRP) were investigated and these properties were compared with the industrial photoinitiator 2-isopropylthioxanthone (ITX). The results showed that CPBA-2 had the best C=C conversion rate in TMPTA. Additionally, the migration rate of CPBA-2 is significantly lower than that of ITX, indicating its lower mobility than conventional photoinitiators. Moreover, the higher solubility of CPBA-2 in monomers provides the great potential for its industrial applications.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113506"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724007675","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ketene derivatives have been widely studied in photopolymerization technology system because of their advantages of excellent light absorption and strong photobleaching ability. Nevertheless, the field of research into photoinitiators derived from ketene that exhibit minimal migration and superior solubility is relatively underexplored. In this study, five new polymerizable ketene derivative photoinitiators (CPBA-1 to 5) were designed and synthesized for photoinitiated radical polymerization (FRP). The photoinitiation performance, migration after curing, and solubility of CPBA1-3 in trimethylpropane triacrylate (TMPTA) free radical polymerization (FRP) were investigated and these properties were compared with the industrial photoinitiator 2-isopropylthioxanthone (ITX). The results showed that CPBA-2 had the best C=C conversion rate in TMPTA. Additionally, the migration rate of CPBA-2 is significantly lower than that of ITX, indicating its lower mobility than conventional photoinitiators. Moreover, the higher solubility of CPBA-2 in monomers provides the great potential for its industrial applications.
期刊介绍:
European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas:
Polymer synthesis and functionalization
• Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers.
Stimuli-responsive polymers
• Including shape memory and self-healing polymers.
Supramolecular polymers and self-assembly
• Molecular recognition and higher order polymer structures.
Renewable and sustainable polymers
• Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites.
Polymers at interfaces and surfaces
• Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications.
Biomedical applications and nanomedicine
• Polymers for regenerative medicine, drug delivery molecular release and gene therapy
The scope of European Polymer Journal no longer includes Polymer Physics.