The Poincaré bifurcation by perturbing a class of cubic Hamiltonian systems

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuan Chang, Liqin Zhao, Qiuyi Wang
{"title":"The Poincaré bifurcation by perturbing a class of cubic Hamiltonian systems","authors":"Yuan Chang,&nbsp;Liqin Zhao,&nbsp;Qiuyi Wang","doi":"10.1016/j.nonrwa.2024.104246","DOIUrl":null,"url":null,"abstract":"<div><div>This paper studies the Poincaré bifurcation of the planar vector fields <span><math><mrow><mover><mrow><mi>x</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>y</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><mi>ɛ</mi><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, <span><math><mrow><mover><mrow><mi>y</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>=</mo><mo>−</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>+</mo><mi>ɛ</mi><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo>&lt;</mo><mrow><mo>|</mo><mi>ɛ</mi><mo>|</mo></mrow><mo>≪</mo><mn>1</mn></mrow></math></span>, <span><span><span><math><mrow><mi>H</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>β</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>a</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>+</mo><mi>b</mi><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>c</mi><msup><mrow><mi>y</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mrow><mo>(</mo><mi>α</mi><mo>,</mo><mi>β</mi><mo>,</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup><mo>,</mo><mspace></mspace><mi>α</mi><mi>β</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span></span></span>with <span><math><mrow><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>c</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≠</mo><mn>0</mn></mrow></math></span>, and <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> are polynomials in <span><math><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></math></span> of the degree <span><math><mi>n</mi></math></span>. The phase portraits of the unperturbed systems with at least one center can be divided into 10 classes by their phase portraits. For general <span><math><mi>n</mi></math></span>, we obtain the upper bound of the number of limit cycles bifurcating from period annuli if the first order Melnikov function is not identically zero. The results are new and some of the results in the literatures are improved.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001858","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the Poincaré bifurcation of the planar vector fields ẋ=Hy(x,y)+ɛf(x,y), ẏ=Hx(x,y)+ɛg(x,y), where 0<|ɛ|1, H(x,y)=αx2+βy2+ax4+bx2y2+cy4,(α,β,a,b,c)R5,αβ<0with a2+b2+c20, and f(x,y) and g(x,y) are polynomials in (x,y) of the degree n. The phase portraits of the unperturbed systems with at least one center can be divided into 10 classes by their phase portraits. For general n, we obtain the upper bound of the number of limit cycles bifurcating from period annuli if the first order Melnikov function is not identically zero. The results are new and some of the results in the literatures are improved.
通过扰动一类立方哈密顿系统的波恩卡列分岔
本文研究了平面向量场ẋ=Hy(x,y)+ɛf(x,y),ẏ=-Hx(x,y)+ɛg(x,y)的泊恩卡分岔,其中 0<;|ɛ|≪1,H(x,y)=αx2+βy2+ax4+bx2y2+cy4,(α,β,a,b,c)∈R5,αβ<0,a2+b2+c2≠0,f(x,y)和g(x,y)是(x,y)的 n 阶多项式。至少有一个中心的无扰动系统的相位肖像可按其相位肖像分为 10 类。对于一般 n,如果一阶梅利尼科夫函数不为同零,我们得到了从周期环分岔出的极限周期数的上限。这些结果是新的,并且改进了文献中的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信