Curved fronts for a Belousov-Zhabotinskii system in exterior domains

IF 2.4 2区 数学 Q1 MATHEMATICS
Bang-Sheng Han, Meng-Xue Chang, Hong-Lei Wei, Yinghui Yang
{"title":"Curved fronts for a Belousov-Zhabotinskii system in exterior domains","authors":"Bang-Sheng Han,&nbsp;Meng-Xue Chang,&nbsp;Hong-Lei Wei,&nbsp;Yinghui Yang","doi":"10.1016/j.jde.2024.10.043","DOIUrl":null,"url":null,"abstract":"<div><div>This paper is concerned with curved fronts for Belousov-Zhabotinskii reaction-diffusion system in external domains <span><math><mi>Ω</mi><mo>=</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>﹨</mo><mi>K</mi></math></span> with a compact obstacle <em>K</em> and aims to investigate the large time dynamics of an entire solution emanating from a pyramidal traveling wave. By constructing several super- and sub-solutions with desirable characteristics, some favorable properties of the pyramidal traveling wave are obtained. We show that by providing propagation completely of the entire solution, the pyramidal traveling wave will converge to the same shape of the pyramidal traveling wave after far behind the obstacle.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1660-1695"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624007058","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with curved fronts for Belousov-Zhabotinskii reaction-diffusion system in external domains Ω=RNK with a compact obstacle K and aims to investigate the large time dynamics of an entire solution emanating from a pyramidal traveling wave. By constructing several super- and sub-solutions with desirable characteristics, some favorable properties of the pyramidal traveling wave are obtained. We show that by providing propagation completely of the entire solution, the pyramidal traveling wave will converge to the same shape of the pyramidal traveling wave after far behind the obstacle.
贝洛索夫-扎博金斯基系统在外部域中的曲线前沿
本文关注具有紧凑障碍物 K 的外部域 Ω=RN﹨K 中的贝洛索夫-扎博金斯基反应扩散系统的曲线前沿,旨在研究由金字塔行波发出的整个解的大时间动力学。通过构建几个具有理想特性的超解和子解,我们获得了金字塔行波的一些有利特性。我们证明,通过提供整个解的完全传播,金字塔行波在远离障碍物后将收敛到金字塔行波的相同形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信