The Navier-Stokes equations on manifolds with boundary

IF 2.4 2区 数学 Q1 MATHEMATICS
Yuanzhen Shao , Gieri Simonett , Mathias Wilke
{"title":"The Navier-Stokes equations on manifolds with boundary","authors":"Yuanzhen Shao ,&nbsp;Gieri Simonett ,&nbsp;Mathias Wilke","doi":"10.1016/j.jde.2024.10.030","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the motion of an incompressible viscous fluid on a compact Riemannian manifold <span><math><mi>M</mi></math></span> with boundary. The motion on <span><math><mi>M</mi></math></span> is modeled by the incompressible Navier-Stokes equations, and the fluid is subject to pure or partial slip boundary conditions of Navier type on <span><math><mo>∂</mo><mi>M</mi></math></span>. We establish existence and uniqueness of strong as well as weak (variational) solutions for initial data in critical spaces. Moreover, we show that the set of equilibria consists of Killing vector fields on <span><math><mi>M</mi></math></span> that satisfy corresponding boundary conditions, and we prove that all equilibria are (locally) stable. In case <span><math><mi>M</mi></math></span> is two-dimensional we show that solutions with divergence free initial condition in <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><mi>M</mi><mo>;</mo><mi>T</mi><mi>M</mi><mo>)</mo></math></span> exist globally and converge to an equilibrium exponentially fast.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1602-1659"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006867","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the motion of an incompressible viscous fluid on a compact Riemannian manifold M with boundary. The motion on M is modeled by the incompressible Navier-Stokes equations, and the fluid is subject to pure or partial slip boundary conditions of Navier type on M. We establish existence and uniqueness of strong as well as weak (variational) solutions for initial data in critical spaces. Moreover, we show that the set of equilibria consists of Killing vector fields on M that satisfy corresponding boundary conditions, and we prove that all equilibria are (locally) stable. In case M is two-dimensional we show that solutions with divergence free initial condition in L2(M;TM) exist globally and converge to an equilibrium exponentially fast.
有边界流形上的纳维-斯托克斯方程
我们考虑的是不可压缩粘性流体在有边界的紧凑黎曼流形 M 上的运动。M 上的运动由不可压缩纳维-斯托克斯方程建模,流体受 ∂M 上纳维类型的纯滑移或部分滑移边界条件的影响。我们建立了临界空间中初始数据的强解和弱解(变分法)的存在性和唯一性。此外,我们证明了均衡集由 M 上满足相应边界条件的基林向量场组成,并证明了所有均衡都是(局部)稳定的。在 M 为二维的情况下,我们证明了在 L2(M;TM) 中具有无发散初始条件的解是全局存在的,并且以指数速度收敛到均衡点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信