Stochastic stability and global dynamics of a mathematical model for drug use: Statistical sensitivity analysis via PRCC

Q1 Mathematics
Sara Soulaimani , Abdelilah Kaddar , Fathalla A. Rihan
{"title":"Stochastic stability and global dynamics of a mathematical model for drug use: Statistical sensitivity analysis via PRCC","authors":"Sara Soulaimani ,&nbsp;Abdelilah Kaddar ,&nbsp;Fathalla A. Rihan","doi":"10.1016/j.padiff.2024.100964","DOIUrl":null,"url":null,"abstract":"<div><div>This article examines the stochastic stability and global dynamics of a mathematical model of drug use. The model divides the population into five compartments current drug users, temporarily abstinent drug users, permanently abstinent drug users, and drug users in rehabilitation. Using Brownian motion, deterministic equations are extended to incorporate stochastic perturbations, capturing real-life uncertainties in drug use within compartments. An analysis of Lyapunov functions is used to determine the global stability of the model. By introducing stochastic elements into the model, we can examine its stability under random perturbations. A global sensitivity analysis, including PRCC results, is conducted to confirm the robustness of the model. Stable drug-free and drug-present equilibria can be maintained in both deterministic and stochastic environments. Numerical simulations illustrate the impact of various parameters on population dynamics and rehabilitation program effectiveness.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"12 ","pages":"Article 100964"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818124003504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This article examines the stochastic stability and global dynamics of a mathematical model of drug use. The model divides the population into five compartments current drug users, temporarily abstinent drug users, permanently abstinent drug users, and drug users in rehabilitation. Using Brownian motion, deterministic equations are extended to incorporate stochastic perturbations, capturing real-life uncertainties in drug use within compartments. An analysis of Lyapunov functions is used to determine the global stability of the model. By introducing stochastic elements into the model, we can examine its stability under random perturbations. A global sensitivity analysis, including PRCC results, is conducted to confirm the robustness of the model. Stable drug-free and drug-present equilibria can be maintained in both deterministic and stochastic environments. Numerical simulations illustrate the impact of various parameters on population dynamics and rehabilitation program effectiveness.
药物使用数学模型的随机稳定性和全局动态性:通过 PRCC 进行统计敏感性分析
本文研究了一个吸毒数学模型的随机稳定性和全局动力学。该模型将人口分为五个部分:当前吸毒者、暂时戒毒者、永久戒毒者和康复中的吸毒者。利用布朗运动,将确定性方程扩展到随机扰动,从而捕捉到现实生活中各分区内毒品使用的不确定性。对 Lyapunov 函数的分析用于确定模型的全局稳定性。通过在模型中引入随机因素,我们可以检验模型在随机扰动下的稳定性。我们还进行了包括 PRCC 结果在内的全局敏感性分析,以确认模型的稳健性。在确定性和随机环境中,都能保持稳定的无药平衡和有药平衡。数值模拟说明了各种参数对种群动态和康复计划有效性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信