{"title":"Lump and interaction solutions to a (3+1)-dimensional BKP-Boussinesq-like equation","authors":"Xiyan Yang, Liangping Tang, Xinyi Gu, Wenxia Chen, Lixin Tian","doi":"10.1016/j.jmaa.2024.129030","DOIUrl":null,"url":null,"abstract":"<div><div>This paper analyzes the (3+1)-dimensional BKP-Boussinesq-like equation, which is widely used to describe and understand nonlinear wave phenomena. We extend Hirota's bilinear method and obtain the generalized bilinear operator. When the prime number <span><math><mi>p</mi><mo>=</mo><mn>3</mn></math></span>, the generalized bilinear form of BKP-Boussinesq-like equation is constructed. Based on its bilinear expression, we explore the lump and lump-soliton solutions to the equation, and analyze the dynamic characteristics and properties of soliton solutions with plots.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 129030"},"PeriodicalIF":1.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009521","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper analyzes the (3+1)-dimensional BKP-Boussinesq-like equation, which is widely used to describe and understand nonlinear wave phenomena. We extend Hirota's bilinear method and obtain the generalized bilinear operator. When the prime number , the generalized bilinear form of BKP-Boussinesq-like equation is constructed. Based on its bilinear expression, we explore the lump and lump-soliton solutions to the equation, and analyze the dynamic characteristics and properties of soliton solutions with plots.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.