{"title":"Enhancing Na+ diffusion dynamics and structural stability of O3-NaMn0.5Ni0.5O2 cathode by Sc and Zn dual-substitution","authors":"Bin-bin WANG , Yi-ming FENG , Xin LUO , Qun HUANG , Zi-xing HOU , Ya-qin WU , Peng-yu WANG , Yu-yang QI , Qing-fei MENG , Wei-feng WEI , Liang-jun ZHOU","doi":"10.1016/S1003-6326(24)66612-4","DOIUrl":null,"url":null,"abstract":"<div><div>Sc and Zn were introduced into O3-NaMn<sub>0.5</sub>Ni<sub>0.5</sub>O<sub>2</sub> (NaMN) using the combination of solution combustion and solid-state method. The effect of Sc and Zn dual-substitution on Na<sup>+</sup> diffusion dynamics and structural stability of NaMN was investigated. The physicochemical characterizations suggest that the introduction of Sc and Zn broaden Na<sup>+</sup> diffusion channels and weaken the Na—O bonds, thereby facilitating the diffusion of sodium ions. Simulations indicate that the Sc and Zn dual-substitution decreases the diffusion barrier of Na-ions and improves the conductivity of the material. The dual-substituted NaMn<sub>0.5</sub>Ni<sub>0.4</sub>Sc<sub>0.04</sub>Zn<sub>0.04</sub>O<sub>2</sub> (NaMNSZ44) cathode delivers impressive cycle stability with capacity retention of 71.2 % after 200 cycles at 1<em>C</em> and 54.8% after 400 cycles at 5<em>C</em>. Additionally, the full cell paired with hard carbon anode exhibits a remarkable long-term cycling stability, showing capacity retention of 64.1% after 250 cycles at 1<em>C</em>. These results demonstrate that Sc and Zn dual-substitution is an effective strategy to improve the Na<sup>+</sup> diffusion dynamics and structural stability of NaMN.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3344-3357"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624666124","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Sc and Zn were introduced into O3-NaMn0.5Ni0.5O2 (NaMN) using the combination of solution combustion and solid-state method. The effect of Sc and Zn dual-substitution on Na+ diffusion dynamics and structural stability of NaMN was investigated. The physicochemical characterizations suggest that the introduction of Sc and Zn broaden Na+ diffusion channels and weaken the Na—O bonds, thereby facilitating the diffusion of sodium ions. Simulations indicate that the Sc and Zn dual-substitution decreases the diffusion barrier of Na-ions and improves the conductivity of the material. The dual-substituted NaMn0.5Ni0.4Sc0.04Zn0.04O2 (NaMNSZ44) cathode delivers impressive cycle stability with capacity retention of 71.2 % after 200 cycles at 1C and 54.8% after 400 cycles at 5C. Additionally, the full cell paired with hard carbon anode exhibits a remarkable long-term cycling stability, showing capacity retention of 64.1% after 250 cycles at 1C. These results demonstrate that Sc and Zn dual-substitution is an effective strategy to improve the Na+ diffusion dynamics and structural stability of NaMN.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.