3D modeling for effect of tool eccentricity on coupled thermal and material flow characteristics during friction stir welding

IF 4.7 1区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Hao SU, Ji CHEN, Chuan-song WU
{"title":"3D modeling for effect of tool eccentricity on coupled thermal and material flow characteristics during friction stir welding","authors":"Hao SU,&nbsp;Ji CHEN,&nbsp;Chuan-song WU","doi":"10.1016/S1003-6326(24)66610-0","DOIUrl":null,"url":null,"abstract":"<div><div>A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding (FSW) process. An asymmetrical boundary condition at the tool−workpiece interface, and the dynamic mesh technique are both employed for the consideration of the tool eccentricity during tool rotating. It is found that tool eccentricity induces the periodical variation of the heat densities both at the tool−workpiece interface and inside the shear layer, but the fluctuation amplitudes of the heat density variations are limited. However, it is demonstrated that tool eccentricity results in significant variation of the material flow behavior in one tool rotating period. Moreover, the material velocity variation at the retreating side is particularly important for the formation of the periodic characteristics in FSW. The modeling result is found to be in good agreement with the experimental one.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3309-3325"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624666100","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding (FSW) process. An asymmetrical boundary condition at the tool−workpiece interface, and the dynamic mesh technique are both employed for the consideration of the tool eccentricity during tool rotating. It is found that tool eccentricity induces the periodical variation of the heat densities both at the tool−workpiece interface and inside the shear layer, but the fluctuation amplitudes of the heat density variations are limited. However, it is demonstrated that tool eccentricity results in significant variation of the material flow behavior in one tool rotating period. Moreover, the material velocity variation at the retreating side is particularly important for the formation of the periodic characteristics in FSW. The modeling result is found to be in good agreement with the experimental one.
搅拌摩擦焊接过程中工具偏心对热和材料流动耦合特性影响的三维建模
本文提出了一种新型三维数值模型,用于研究搅拌摩擦焊(FSW)过程中刀具偏心对热流和材料流耦合特性的影响。在考虑工具旋转过程中的工具偏心时,采用了工具-工件界面的非对称边界条件和动态网格技术。研究发现,刀具偏心会引起刀具-工件界面和剪切层内部热密度的周期性变化,但热密度变化的波动幅度有限。然而,研究表明,刀具偏心会导致在一个刀具旋转周期内材料流动行为发生显著变化。此外,后退侧的材料速度变化对 FSW 周期性特征的形成尤为重要。建模结果与实验结果十分吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
17.80%
发文量
8456
审稿时长
3.6 months
期刊介绍: The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信