Wei-min CHEN , Jin-feng LING , Kewu BAI , Kai-hong ZHENG , Fu-xing YIN , Li-jun ZHANG , Yong DU
{"title":"High-throughput studies and machine learning for design of β titanium alloys with optimum properties","authors":"Wei-min CHEN , Jin-feng LING , Kewu BAI , Kai-hong ZHENG , Fu-xing YIN , Li-jun ZHANG , Yong DU","doi":"10.1016/S1003-6326(24)66602-1","DOIUrl":null,"url":null,"abstract":"<div><div>Based on experimental data, machine learning (ML) models for Young’s modulus, hardness, and hot-working ability of Ti-based alloys were constructed. In the models, the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples. Then, the Ti−(22±0.5)at.%Nb−(30±0.5)at.%Zr−(4±0.5)at.%Cr (TNZC) alloy with a single body-centered cubic (BCC) phase was screened in an interactive loop. The experimental results exhibited a relatively low Young’s modulus of (58±4) GPa, high nanohardness of (3.4±0.2) GPa, high microhardness of HV (520±5), high compressive yield strength of (1220±18) MPa, large plastic strain greater than 30%, and superior dry- and wet-wear resistance. This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties. Moreover, it is indicated that TNZC alloy is an attractive candidate for biomedical applications.</div></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 10","pages":"Pages 3194-3207"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624666021","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Based on experimental data, machine learning (ML) models for Young’s modulus, hardness, and hot-working ability of Ti-based alloys were constructed. In the models, the interdiffusion and mechanical property data were high-throughput re-evaluated from composition variations and nanoindentation data of diffusion couples. Then, the Ti−(22±0.5)at.%Nb−(30±0.5)at.%Zr−(4±0.5)at.%Cr (TNZC) alloy with a single body-centered cubic (BCC) phase was screened in an interactive loop. The experimental results exhibited a relatively low Young’s modulus of (58±4) GPa, high nanohardness of (3.4±0.2) GPa, high microhardness of HV (520±5), high compressive yield strength of (1220±18) MPa, large plastic strain greater than 30%, and superior dry- and wet-wear resistance. This work demonstrates that ML combined with high-throughput analytic approaches can offer a powerful tool to accelerate the design of multicomponent Ti alloys with desired properties. Moreover, it is indicated that TNZC alloy is an attractive candidate for biomedical applications.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.