Numerical simulation and error estimation of the Davey-Stewartson equations with virtual element method

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Baharak Hooshyarfarzin, Mostafa Abbaszadeh, Mehdi Dehghan
{"title":"Numerical simulation and error estimation of the Davey-Stewartson equations with virtual element method","authors":"Baharak Hooshyarfarzin,&nbsp;Mostafa Abbaszadeh,&nbsp;Mehdi Dehghan","doi":"10.1016/j.amc.2024.129146","DOIUrl":null,"url":null,"abstract":"<div><div>This paper aims to present the virtual element method (VEM) for solving the Davey–Stewartson equations with application in fluid mechanics. The VEM is a recent technology that can be regarded as a generalization of the standard finite element method (FEM) to general meshes without the need to integrate complex nonpolynomial functions on the elements. This method only utilizes degrees of freedom associated with the boundary, hence reducing computational complexity compared to the standard FEM. To obtain a full- discrete scheme we combine a semi-implicit scheme with the VEM for time and space variable discretizations, respectively. Furthermore, we obtain an error bound for the full-discrete scheme. The theoretical analysis demonstrates that the convergence rate in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm is <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>τ</mi><mo>)</mo></math></span>. Numerical examples confirm efficiency and applicability of the presented method and validate the theoretical outcomes.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006076","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to present the virtual element method (VEM) for solving the Davey–Stewartson equations with application in fluid mechanics. The VEM is a recent technology that can be regarded as a generalization of the standard finite element method (FEM) to general meshes without the need to integrate complex nonpolynomial functions on the elements. This method only utilizes degrees of freedom associated with the boundary, hence reducing computational complexity compared to the standard FEM. To obtain a full- discrete scheme we combine a semi-implicit scheme with the VEM for time and space variable discretizations, respectively. Furthermore, we obtain an error bound for the full-discrete scheme. The theoretical analysis demonstrates that the convergence rate in the L2 norm is O(h2+τ). Numerical examples confirm efficiency and applicability of the presented method and validate the theoretical outcomes.
用虚拟元素法对 Davey-Stewartson 方程进行数值模拟和误差估计
本文旨在介绍用于求解 Davey-Stewartson 方程的虚拟元素法(VEM)在流体力学中的应用。虚拟元素法是一种最新技术,可视为标准有限元法(FEM)在一般网格上的推广,无需在元素上集成复杂的非多项式函数。这种方法只利用与边界相关的自由度,因此与标准有限元法相比降低了计算复杂度。为了获得全离散方案,我们将半隐式方案与 VEM 结合起来,分别进行时间和空间变量离散。此外,我们还获得了全离散方案的误差约束。理论分析表明,L2 准则的收敛速率为 O(h2+τ)。数值实例证实了所提出方法的效率和适用性,并验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信