Synchronization and chimeras in asymmetrically coupled memristive Tabu learning neuron network

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Prasina , V. Samuthira Pandi , W. Nancy , K. Thilagam , K. Veena , A. Muniyappan
{"title":"Synchronization and chimeras in asymmetrically coupled memristive Tabu learning neuron network","authors":"A. Prasina ,&nbsp;V. Samuthira Pandi ,&nbsp;W. Nancy ,&nbsp;K. Thilagam ,&nbsp;K. Veena ,&nbsp;A. Muniyappan","doi":"10.1016/j.amc.2024.129163","DOIUrl":null,"url":null,"abstract":"<div><div>The coupling between neuronal oscillators plays an intriguing role in understanding the dynamics of the biological neurons present in realistic situations. Importantly, when the coupling between these neurons assumes an asymmetric nature, it can lead to profound changes in their overall behavior. In order to explore the impact of asymmetrical coupling on neuron models subjected to magnetic flux induction, we employ a coupled Tabu learning neuron model. Specifically, we illustrate the interplay between flux coupling and asymmetric electrical synapses concerning the control parameters of the proposed system using phase portraits, time series, bifurcation analysis, and Lyapunov spectrum. In particular, we show the dynamics by taking into account asymmetric interactions between neurons, from a simple network of two coupled systems to a network of nodes. Primarily, we demonstrate that two coupled systems exhibit synchronization for a fixed magnitude of control parameter with increasing coupling strength. Furthermore, we discuss the collective dynamics for the distinct network connectivity including regular, small-world and random. For all network connections, an increase in coupling strength facilitates a transition from desynchronization to synchronization via chimera state. We believe that attaining synchronization in Tabu learning neuron can act as a pivotal factor for neuron activity, contributing to the realization of such behavior in the context of numerous cognitive processes.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006246","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The coupling between neuronal oscillators plays an intriguing role in understanding the dynamics of the biological neurons present in realistic situations. Importantly, when the coupling between these neurons assumes an asymmetric nature, it can lead to profound changes in their overall behavior. In order to explore the impact of asymmetrical coupling on neuron models subjected to magnetic flux induction, we employ a coupled Tabu learning neuron model. Specifically, we illustrate the interplay between flux coupling and asymmetric electrical synapses concerning the control parameters of the proposed system using phase portraits, time series, bifurcation analysis, and Lyapunov spectrum. In particular, we show the dynamics by taking into account asymmetric interactions between neurons, from a simple network of two coupled systems to a network of nodes. Primarily, we demonstrate that two coupled systems exhibit synchronization for a fixed magnitude of control parameter with increasing coupling strength. Furthermore, we discuss the collective dynamics for the distinct network connectivity including regular, small-world and random. For all network connections, an increase in coupling strength facilitates a transition from desynchronization to synchronization via chimera state. We believe that attaining synchronization in Tabu learning neuron can act as a pivotal factor for neuron activity, contributing to the realization of such behavior in the context of numerous cognitive processes.
非对称耦合记忆性塔布学习神经元网络中的同步和嵌合体
神经元振荡器之间的耦合在理解现实环境中生物神经元的动态方面发挥着引人入胜的作用。重要的是,当这些神经元之间的耦合具有不对称性质时,会导致它们的整体行为发生深刻变化。为了探索非对称耦合对神经元模型在磁通量诱导下的影响,我们采用了一个耦合塔布学习神经元模型。具体来说,我们使用相位肖像、时间序列、分岔分析和李亚普诺夫频谱来说明磁通耦合和非对称电突触之间的相互作用,这些相互作用涉及所提议系统的控制参数。特别是,考虑到神经元之间的不对称相互作用,我们展示了从两个耦合系统的简单网络到节点网络的动态变化。首先,我们证明了两个耦合系统在控制参数大小固定的情况下,随着耦合强度的增加会表现出同步性。此外,我们还讨论了不同网络连接的集体动力学,包括规则网络、小世界网络和随机网络。对于所有网络连接,耦合强度的增加都有助于通过嵌合状态从非同步过渡到同步。我们认为,在塔布学习神经元中实现同步可以作为神经元活动的关键因素,有助于在众多认知过程中实现这种行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信