S. Fracassetti , J. Refsgaard , F. Endo , S. Ota , R. Raabe
{"title":"Data analysis procedures to improve energy resolution in silicon detectors using GET electronics","authors":"S. Fracassetti , J. Refsgaard , F. Endo , S. Ota , R. Raabe","doi":"10.1016/j.nima.2024.170016","DOIUrl":null,"url":null,"abstract":"<div><div>This study primarily focuses on improving the energy resolution of Double-Sided Silicon Strip Detectors (DSSSD) through optimized data analysis procedures using General Electronics for Time Projection Chambers (GET). We introduce two edge identification algorithms that demonstrate comparable efficacy. These methods are subsequently integrated with various techniques for measuring pulse amplitude, including sample smoothing and pole-zero cancellation. Notably, sample smoothing significantly enhances performances, achieving a resolution of 0.33<!--> <!-->% with DSSSD <span><math><mi>α</mi></math></span> calibration data. Additionally, we describe and apply the trapezoidal filter, examining its impact on resolution improvement and obtaining comparable results. The study also evaluates how internal GET parameters, specifically the sampling frequency and the shaping time of the Sallen-Key (SK) low-pass filter, affect signal resolution. Higher sampling frequencies and lower values of the SK filter were found to increase performance.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900224009422","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
This study primarily focuses on improving the energy resolution of Double-Sided Silicon Strip Detectors (DSSSD) through optimized data analysis procedures using General Electronics for Time Projection Chambers (GET). We introduce two edge identification algorithms that demonstrate comparable efficacy. These methods are subsequently integrated with various techniques for measuring pulse amplitude, including sample smoothing and pole-zero cancellation. Notably, sample smoothing significantly enhances performances, achieving a resolution of 0.33 % with DSSSD calibration data. Additionally, we describe and apply the trapezoidal filter, examining its impact on resolution improvement and obtaining comparable results. The study also evaluates how internal GET parameters, specifically the sampling frequency and the shaping time of the Sallen-Key (SK) low-pass filter, affect signal resolution. Higher sampling frequencies and lower values of the SK filter were found to increase performance.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.