{"title":"Unified line-of-sight: A guidance algorithm with integral wind-up mitigation and turning assist for USVs","authors":"Kantapon Tanakitkorn, Surasak Phoemsapthawee, Nonthipat Thaweewat, Sirirat Jungrungruengtaworn","doi":"10.1016/j.oceaneng.2024.119615","DOIUrl":null,"url":null,"abstract":"<div><div>Guidance algorithm is a key part in waypoint navigation for USVs. In this paper, a novel guidance algorithm named the unified line-of-sight (ULOS) is introduced. The ULOS algorithm is developed based on the concept of the integral-based LOS algorithm. However, a special technique is employed in the ULOS algorithm to address the integral wind-up issue commonly found in other integral-based LOS algorithms in the literature. In addition, a heading compensation term based on sway velocity is incorporated into the algorithm. This sway compensation term enhances the vehicle’s ability to execute sharp turns effectively. The ULOS algorithm was benchmarked against four existing guidance algorithms in various tasks through numerical simulations. The comprehensive results have revealed the superior performance of the ULOS algorithm over the other algorithms.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"314 ","pages":"Article 119615"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801824029536","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Guidance algorithm is a key part in waypoint navigation for USVs. In this paper, a novel guidance algorithm named the unified line-of-sight (ULOS) is introduced. The ULOS algorithm is developed based on the concept of the integral-based LOS algorithm. However, a special technique is employed in the ULOS algorithm to address the integral wind-up issue commonly found in other integral-based LOS algorithms in the literature. In addition, a heading compensation term based on sway velocity is incorporated into the algorithm. This sway compensation term enhances the vehicle’s ability to execute sharp turns effectively. The ULOS algorithm was benchmarked against four existing guidance algorithms in various tasks through numerical simulations. The comprehensive results have revealed the superior performance of the ULOS algorithm over the other algorithms.
期刊介绍:
Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.