Jun Tang , Yang Qu , Enxue Ma , Yuan Yue , Xinmiao Sun , Lin Gan
{"title":"Fibonacci array-based temporal-spatial localization with neural networks","authors":"Jun Tang , Yang Qu , Enxue Ma , Yuan Yue , Xinmiao Sun , Lin Gan","doi":"10.1016/j.apacoust.2024.110368","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a novel Sound Source Localization (SSL) algorithm based on neural networks in the time domain space. Building upon previous research [Tang J, Sun X, Yan L, et al. Sound source localization method based time-domain signal feature using deep learning. Appl Acoust 2023;213:109626] that leverages neural network techniques for sound source localization, our methodology diverges from conventional grid-based approaches by circumventing spatial resolution limitations inherent to meshing through direct prediction of target coordinates via a regression method. We employ the Fibonacci Sphere Algorithm (FSA) to ensure a uniform distribution of microphone array elements, enhancing the array’s response consistency to sound sources from various directions. Our comprehensive model simulates a spatial SSL system within a 10-m spherical space. Experimental investigations have substantiated that the proposed neural network architecture demonstrates exceptional localization precision, as evidenced by the Mean Absolute Errors (MAE) obtained, which are 0.268, 0.304, and 0.287, correspondingly, when applied to 64-, 32-, and 16-element array configurations. Furthermore, our experiments demonstrate the strong generalization capability of the trained models, maintaining satisfactory performance even with element losses ranging from 5 % to 30 %. These findings highlight the potential of neural networks in SSL applications and provide valuable insights for future research and development in this field.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X2400519X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a novel Sound Source Localization (SSL) algorithm based on neural networks in the time domain space. Building upon previous research [Tang J, Sun X, Yan L, et al. Sound source localization method based time-domain signal feature using deep learning. Appl Acoust 2023;213:109626] that leverages neural network techniques for sound source localization, our methodology diverges from conventional grid-based approaches by circumventing spatial resolution limitations inherent to meshing through direct prediction of target coordinates via a regression method. We employ the Fibonacci Sphere Algorithm (FSA) to ensure a uniform distribution of microphone array elements, enhancing the array’s response consistency to sound sources from various directions. Our comprehensive model simulates a spatial SSL system within a 10-m spherical space. Experimental investigations have substantiated that the proposed neural network architecture demonstrates exceptional localization precision, as evidenced by the Mean Absolute Errors (MAE) obtained, which are 0.268, 0.304, and 0.287, correspondingly, when applied to 64-, 32-, and 16-element array configurations. Furthermore, our experiments demonstrate the strong generalization capability of the trained models, maintaining satisfactory performance even with element losses ranging from 5 % to 30 %. These findings highlight the potential of neural networks in SSL applications and provide valuable insights for future research and development in this field.
期刊介绍:
Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense.
Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems.
Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.