Local C2-smooth spline quasi-interpolation methods

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
{"title":"Local C2-smooth spline quasi-interpolation methods","authors":"","doi":"10.1016/j.aml.2024.109346","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we construct new univariate local <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> quasi-interpolating splines having specific polynomial reproduction properties. The splines are directly determined by setting their Bernstein-Bézier coefficients to appropriate combinations of the given data values. In certain cases we obtain a family of quasi-interpolating operators satisfying the required conditions, so we fix some extra properties (interpolation of the vertices, extra locality, extra polynomial reproduction) in order to compute unique approximants. We also provide numerical results confirming the theoretical ones.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003665","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we construct new univariate local C2 quasi-interpolating splines having specific polynomial reproduction properties. The splines are directly determined by setting their Bernstein-Bézier coefficients to appropriate combinations of the given data values. In certain cases we obtain a family of quasi-interpolating operators satisfying the required conditions, so we fix some extra properties (interpolation of the vertices, extra locality, extra polynomial reproduction) in order to compute unique approximants. We also provide numerical results confirming the theoretical ones.
局部 C2 平滑样条准插值法
在本文中,我们构建了具有特定多项式再现特性的新的单变量局部 C2 准插值样条。通过将其 Bernstein-Bézier 系数设置为给定数据值的适当组合,可以直接确定这些样条。在某些情况下,我们会得到满足所需条件的准插值算子族,因此我们会固定一些额外的属性(顶点插值、额外的局部性、额外的多项式再现),以便计算唯一的近似值。我们还提供了证实理论结果的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信